**Author**: Friedrich Hirzebruch

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Technology & Engineering

**Page:** 212

**View:** 370

This book provides a comprehensive introduction to the theory of elliptic genera due to Ochanine, Landweber, Stong, and others. The theory describes a new cobordism invariant for manifolds in terms of modular forms. The book evolved from notes of a course given at the University of Bonn. After providing some background material elliptic genera are constructed, including the classical genera signature and the index of the Dirac operator as special cases. Various properties of elliptic genera are discussed, especially their behaviour in fibre bundles and rigidity for group actions. For stably almost complex manifolds the theory is extended to elliptic genera of higher level. The text is in most parts self-contained. The results are illustrated by explicit examples and by comparison with well-known theorems. The relevant aspects of the theory of modular forms are derived in a seperate appendix, providing also a useful reference for mathematicians working in this field.

A small conference was held in September 1986 to discuss new applications of elliptic functions and modular forms in algebraic topology, which had led to the introduction of elliptic genera and elliptic cohomology. The resulting papers range, fom these topics through to quantum field theory, with considerable attention to formal groups, homology and cohomology theories, and circle actions on spin manifolds. Ed. Witten's rich article on the index of the Dirac operator in loop space presents a mathematical treatment of his interpretation of elliptic genera in terms of quantum field theory. A short introductory article gives an account of the growth of this area prior to the conference.

This volume is an outgrowth of the research project "The Inverse Ga lois Problem and its Application to Number Theory" which was carried out in three academic years from 1999 to 2001 with the support of the Grant-in-Aid for Scientific Research (B) (1) No. 11440013. In September, 2001, an international conference "Galois Theory and Modular Forms" was held at Tokyo Metropolitan University after some preparatory work shops and symposia in previous years. The title of this book came from that of the conference, and the authors were participants of those meet All of the articles here were critically refereed by experts. Some of ings. these articles give well prepared surveys on branches of research areas, and many articles aim to bear the latest research results accompanied with carefully written expository introductions. When we started our re~earch project, we picked up three areas to investigate under the key word "Galois groups"; namely, "generic poly nomials" to be applied to number theory, "Galois coverings of algebraic curves" to study new type of representations of absolute Galois groups, and explicitly described "Shimura varieties" to understand well the Ga lois structures of some interesting polynomials including Brumer's sextic for the alternating group of degree 5. The topics of the articles in this volume are widely spread as a result. At a first glance, some readers may think this book somewhat unfocussed.

The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.

Brought together in this book are papers from a conference on differential geometry held in Pisa, in honour of Eugenio Calabi. The contributions cover a wide spectrum of areas and give an unsurpassed overview of research into differential geometry that will interest all who work in this subject.

One of the greatest mathematicians in the world, Michael Atiyah has earned numerous honors, including a Fields Medal, the mathematical equivalent of the Nobel Prize. While the focus of his work has been in the areas of algebraic geometry and topology, he has also participated in research with theoretical physicists. For the first time, these volumes bring together Atiyah's collected papers--both monographs and collaborative works-- including those dealing with mathematical education and current topics of research such as K-theory and gauge theory. The volumes are organized thematically. They will be of great interest to research mathematicians, theoretical physicists, and graduate students in these areas.

The work of Alain Connes has cut a wide swath across several areas of mathematics and physics. Reflecting its broad spectrum and profound impact on the contemporary mathematical landscape, this collection of articles covers a wealth of topics at the forefront of research in operator algebras, analysis, noncommutative geometry, topology, number theory and physics. Specific themes covered by the articles are as follows: entropy in operator algebras, regular $C^*$-algebras of integral domains, properly infinite $C^*$-algebras, representations of free groups and 1-cohomology, Leibniz seminorms and quantum metric spaces; von Neumann algebras, fundamental Group of $\mathrm{II}_1$ factors, subfactors and planar algebras; Baum-Connes conjecture and property T, equivariant K-homology, Hermitian K-theory; cyclic cohomology, local index formula and twisted spectral triples, tangent groupoid and the index theorem; noncommutative geometry and space-time, spectral action principle, quantum gravity, noncommutative ADHM and instantons, non-compact spectral triples of finite volume, noncommutative coordinate algebras; Hopf algebras, Vinberg algebras, renormalization and combinatorics, motivic renormalization and singularities; cyclotomy and analytic geometry over $F_1$, quantum modular forms; differential K-theory, cyclic theory and S-cohomology.

Dieser Band beinhaltet eine Sammlung wissenschaftlicher ForschungsbeitrÃ¤ge zu unendlich-dimensionalen Gruppen und Mannigfaltigkeiten in der Mathematik und Quantenphysik.

This book provides the reader with the tools to understand the ongoing classification and construction project of Lie superalgebras. It presents the material in as simple terms as possible. Coverage specifically details Borcherds-Kac-Moody superalgebras. The book examines the link between the above class of Lie superalgebras and automorphic form and explains their construction from lattice vertex algebras. It also includes all necessary background information.