**Author**: Friedrich Hirzebruch,Thomas Berger,Rainer Jung

**Publisher:** Springer Science & Business Media

**ISBN:** 3663107264

**Category:** Technology & Engineering

**Page:** 212

**View:** 6677

This book provides a comprehensive introduction to the theory of elliptic genera due to Ochanine, Landweber, Stong, and others. The theory describes a new cobordism invariant for manifolds in terms of modular forms. The book evolved from notes of a course given at the University of Bonn. After providing some background material elliptic genera are constructed, including the classical genera signature and the index of the Dirac operator as special cases. Various properties of elliptic genera are discussed, especially their behaviour in fibre bundles and rigidity for group actions. For stably almost complex manifolds the theory is extended to elliptic genera of higher level. The text is in most parts self-contained. The results are illustrated by explicit examples and by comparison with well-known theorems. The relevant aspects of the theory of modular forms are derived in a seperate appendix, providing also a useful reference for mathematicians working in this field.

A small conference was held in September 1986 to discuss new applications of elliptic functions and modular forms in algebraic topology, which had led to the introduction of elliptic genera and elliptic cohomology. The resulting papers range, fom these topics through to quantum field theory, with considerable attention to formal groups, homology and cohomology theories, and circle actions on spin manifolds. Ed. Witten's rich article on the index of the Dirac operator in loop space presents a mathematical treatment of his interpretation of elliptic genera in terms of quantum field theory. A short introductory article gives an account of the growth of this area prior to the conference.

The key words for the book are "Galois groups", or more precisely "generic polynomials","Galois coverings of algebraic curves" and "Shimura varieties". The work includes surveys on branches of research areas and many articles, all critically refereed by experts, which present the latest research results with carefully written expository introductions. The topics cover a wide range which nonetheless have a common thread. This volume is suitable for advanced undergraduate and graduate students, as well as researchers.

A small conference was held in September 1986 to discuss new applications of elliptic functions and modular forms in algebraic topology, which had led to the introduction of elliptic genera and elliptic cohomology. The resulting papers range, fom these topics through to quantum field theory, with considerable attention to formal groups, homology and cohomology theories, and circle actions on spin manifolds. Ed. Witten's rich article on the index of the Dirac operator in loop space presents a mathematical treatment of his interpretation of elliptic genera in terms of quantum field theory. A short introductory article gives an account of the growth of this area prior to the conference.

The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.

Brought together in this book are papers from a conference on differential geometry held in Pisa, in honour of Eugenio Calabi. The contributions cover a wide spectrum of areas and give an unsurpassed overview of research into differential geometry that will interest all who work in this subject.

This book was originally published in 2006. Moonshine forms a way of explaining the mysterious connection between the monster finite group and modular functions from classical number theory. The theory has evolved to describe the relationship between finite groups, modular forms and vertex operator algebras. Moonshine Beyond the Monster describes the general theory of Moonshine and its underlying concepts, emphasising the interconnections between mathematics and mathematical physics. Written in a clear and pedagogical style, this book is ideal for graduate students and researchers working in areas such as conformal field theory, string theory, algebra, number theory, geometry and functional analysis. Containing over a hundred exercises, it is also a suitable textbook for graduate courses on Moonshine and as supplementary reading for courses on conformal field theory and string theory.

What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. --MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. -- Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today. To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold--the intersection form--and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers. The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.

The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the recent developments that have led to important applications in the context of the topology of four manifolds.

One of the greatest mathematicians in the world, Michael Atiyah has earned numerous honors, including a Fields Medal, the mathematical equivalent of the Nobel Prize. While the focus of his work has been in the areas of algebraic geometry and topology, he has also participated in research with theoretical physicists. For the first time, these volumes bring together Atiyah's collected papers--both monographs and collaborative works-- including those dealing with mathematical education and current topics of research such as K-theory and gauge theory. The volumes are organized thematically. They will be of great interest to research mathematicians, theoretical physicists, and graduate students in these areas.

Dieser Band beinhaltet eine Sammlung wissenschaftlicher Forschungsbeiträge zu unendlich-dimensionalen Gruppen und Mannigfaltigkeiten in der Mathematik und Quantenphysik.

The book divides naturally into several parts according to the level of the material, the background required of the reader, and the style of presentation with respect to details of proofs. For example, the first part, to Chapter 6, is undergraduate in level, the second part requires a background in Galois theory and the third some complex analysis, while the last parts, from Chapter 12 on, are mostly at graduate level. A general outline ofmuch ofthe material can be found in Tate's colloquium lectures reproduced as an article in Inven tiones [1974]. The first part grew out of Tate's 1961 Haverford Philips Lectures as an attempt to write something for publication c10sely related to the original Tate notes which were more or less taken from the tape recording of the lectures themselves. This inc1udes parts of the Introduction and the first six chapters The aim ofthis part is to prove, by elementary methods, the Mordell theorem on the finite generation of the rational points on elliptic curves defined over the rational numbers. In 1970 Tate teturned to Haverford to give again, in revised form, the originallectures of 1961 and to extend the material so that it would be suitable for publication. This led to a broader plan forthe book.

Riemannian Topology and Structures on Manifolds results from a similarly entitled conference held on the occasion of Charles P. Boyer’s 65th birthday. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, Kähler and Sasakian geometry, and their interrelation to mathematical physics, especially M and superstring theory. Focusing on these fundamental ideas, this collection presents review articles, original results, and open problems of interest.

The work of Alain Connes has cut a wide swath across several areas of mathematics and physics. Reflecting its broad spectrum and profound impact on the contemporary mathematical landscape, this collection of articles covers a wealth of topics at the forefront of research in operator algebras, analysis, noncommutative geometry, topology, number theory and physics. Specific themes covered by the articles are as follows: entropy in operator algebras, regular $C^*$-algebras of integral domains, properly infinite $C^*$-algebras, representations of free groups and 1-cohomology, Leibniz seminorms and quantum metric spaces; von Neumann algebras, fundamental Group of $\mathrm{II}_1$ factors, subfactors and planar algebras; Baum-Connes conjecture and property T, equivariant K-homology, Hermitian K-theory; cyclic cohomology, local index formula and twisted spectral triples, tangent groupoid and the index theorem; noncommutative geometry and space-time, spectral action principle, quantum gravity, noncommutative ADHM and instantons, non-compact spectral triples of finite volume, noncommutative coordinate algebras; Hopf algebras, Vinberg algebras, renormalization and combinatorics, motivic renormalization and singularities; cyclotomy and analytic geometry over $F_1$, quantum modular forms; differential K-theory, cyclic theory and S-cohomology.

This book provides the reader with the tools to understand the ongoing classification and construction project of Lie superalgebras. It presents the material in as simple terms as possible. Coverage specifically details Borcherds-Kac-Moody superalgebras. The book examines the link between the above class of Lie superalgebras and automorphic form and explains their construction from lattice vertex algebras. It also includes all necessary background information.

In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.

Comprehensive account of recent developments in arithmetic theory of modular forms, for graduates and researchers.