**Author**: Samuel J. Lomonaco

**Publisher:** American Mathematical Soc.

**ISBN:** 0821850164

**Category:** Mathematics

**Page:** 346

**View:** 6902

This volume arose from a special session on Low Dimensional Topology organized and conducted by Dr. Lomonaco at the American Mathematical Society meeting held in San Francisco, California, January 7-11, 1981.

This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters OCo twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.

This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters — twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters. Sample Chapter(s) Chapter 1: Links (205 KB) Contents:Abelian Covers:LinksHomology and Duality in CoversDeterminantal InvariantsThe Maximal Abelian CoverSublinks and Other Abelian CoversTwisted Polynomial InvariantsApplications: Special Cases and Symmetries:Knot ModulesLinks with Two ComponentsSymmetriesSingularities of Plane Algebraic CurvesFree Covers, Nilpotent Quotients and Completion:Free CoversNilpotent QuotientsAlgebraic ClosureDisc Links Readership: Graduate students and academics in geometry and topology. Keywords:Algebraic Invariant;Links;Abelian Cover;Twisted Polynomial Invariant;Knot ModuleReviews: “The main change to the book is the addition of two chapters. These are timely and welcome additions to an already useful and comprehensive book.” Mathematical Reviews Reviews of the First Edition: “Jonathan Hillman has successfully filled an unfortunate gap in the literature of low-dimensional topology … With this up-to-date book we have a reference covering a range of topics that until now were available only in their original sources … Hillman has done an excellent job of referencing his book, both within the text and in the bibliography, with several hundred references included.” Mathematical Reviews “Algebraic Invariants of Links is masterful, offering a survey of work, much of which has not been summarized elsewhere. It is an essential reference for those interested in link theory … it is unique and valuable.” Bulletin of the American Mathematical Society “The author, who is one of the major experts on the topic, must be surely congratulated for this attractive book, written in a careful, very precise and quite readable style. It serves as an excellent self-contained and up-to-date monograph on the algebraic invariants of links … I strongly recommend this beautiful book to anyone interested in the algebraic theory of links and its applications.” Mathematics Abstracts

Volume 2 is divided into three parts: the first 'Surfaces' contains an article by Thurston on earthquakes and by Penner on traintracks. The second part is entitled 'Knots and 3-Manifolds' and the final part 'Kleinian Groups'.

This volume presents the proceedings from the conference on low dimensional topology held at the University of Madeira (Portugal). The event was attended by leading scientists in the field from the U.S., Asia, and Europe. The book has two main parts. The first is devoted to the Poincare conjecture, characterizations of $PL$-manifolds, covering quadratic forms of links and to categories in low dimensional topology that appear in connection with conformal and quantum field theory. The second part of the volume covers topological quantum field theory and polynomial invariants for rational homology 3-spheres, derived from the quantum $SU(2)$-invariants associated with the first cohomology class modulo two, knot theory, and braid groups. This collection reflects development and progress in the field and presents interesting and new results.

Geometric Topology can be defined to be the investigation of global properties of a further structure (e.g. differentiable, Riemannian, complex,algebraic etc.) one can impose on a topological manifold. At the C.I.M.E. session in Montecatini, in 1990, three courses of lectures were given onrecent developments in this subject which is nowadays emerging as one of themost fascinating and promising fields of contemporary mathematics. The notesof these courses are collected in this volume and can be described as: 1) the geometry and the rigidity of discrete subgroups in Lie groups especially in the case of lattices in semi-simple groups; 2) the study of the critical points of the distance function and its appication to the understanding of the topology of Riemannian manifolds; 3) the theory of moduli space of instantons as a tool for studying the geometry of low-dimensional manifolds. CONTENTS: J. Cheeger: Critical Points of Distance Functions and Applications to Geometry.- M. Gromov, P. Pansu, Rigidity of Lattices: An Introduction.- Chr. Okonek: Instanton Invariants and Algebraic Surfaces.

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

*Commemorating SISTAG : Singapore International Symposium in Topology and Geometry, (SISTAG) July 2-6, 2001, National University of Singapore, Singapore*

**Author**: A. Jon Berrick,Man Chun Leung,Xingwang Xu,Singapore international symposium in topology and geometry,Michel Chun LeDoux,Singapore International Symposium in Topology and Geometry (2001 National University of

**Publisher:** American Mathematical Soc.

**ISBN:** 0821828207

**Category:** Mathematics

**Page:** 263

**View:** 2688

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

This book contains the proceedings of the conference Geometry & Topology Down Under, held July 11-22, 2011, at the University of Melbourne, Parkville, Australia, in honour of Hyam Rubinstein. The main topic of the book is low-dimensional geometry and topology. It includes both survey articles based on courses presented at the conferences and research articles devoted to important questions in low-dimensional geometry. Together, these contributions show how methods from different fields of mathematics contribute to the study of 3-manifolds and Gromov hyperbolic groups. It also contains a list of favorite problems by Hyam Rubinstein.

This volume contains the proceedings of a conference held from June 4-6, 2010, at Oklahoma State University, in honor of William (Bus) Jaco's 70th birthday. His contributions to research in low dimensional geometry and topology and to the American mathematical community, especially through his work for the American Mathematical Society, were recognized during the conference. The focus of the conference was on triangulations and geometric structures for three-dimensional manifolds. The papers in this volume present significant new results on these topics, as well as in geometric group theory.

This book is based on a 10-day workshop given by leading experts in hyperbolic geometry, quantum topology and number theory, in June 2009 at Columbia University. Each speaker gave a minicourse consisting of three or four lectures aimed at graduate students and recent PhDs. The proceedings of this enormously successful workshop can serve as an introduction to this active research area in a way that is expository and broadly accessible to graduate students. Although many ideas overlap, the twelve expository/research papers in this volume can be grouped into four rough categories: (1) different approaches to the Volume Conjecture, and relations between the main quantum and geometric invariants; (2) the geometry associated to triangulations of hyperbolic 3-manifolds; (3) arithmetic invariants of hyperbolic 3-manifolds; (4) quantum invariants associated to knots and hyperbolic 3-manifolds. The workshop, the conference that followed, and these proceedings continue a long tradition in quantum and geometric topology of bringing together ideas from diverse areas of mathematics and physics, and highlights the importance of collaborative research in tackling big problems that require expertise in disparate disciplines.

The influence of Solomon Lefschetz (1884-1972) in geometry and topology 40 years after his death has been very profound. Lefschetz's influence in Mexican mathematics has been even greater. In this volume, celebrating 50 years of mathematics at Cinvestav-México, many of the fields of geometry and topology are represented by some of the leaders of their respective fields. This volume opens with Michael Atiyah reminiscing about his encounters with Lefschetz and México. Topics covered in this volume include symplectic flexibility, Chern-Simons theory and the theory of classical theta functions, toric topology, the Beilinson conjecture for finite-dimensional associative algebras, partial monoids and Dold-Thom functors, the weak b-principle, orbit configuration spaces, equivariant extensions of differential forms for noncompact Lie groups, dynamical systems and categories, and the Nahm pole boundary condition.

In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.