LabVIEW Signal Processing

Author: Mahesh L. Chugani,Abhay R. Samant,Michael Cerna

Publisher: Pearson Education

ISBN: 0132441861

Category: Technology & Engineering

Page: 688

View: 3980

Get results fast, with LabVIEW Signal Processing! This practical guide to LabVIEW Signal Processing and control system capabilities is designed to help you get results fast. You'll understand LabVIEW's extensive analysis capabilities and learn to identify and use the best LabVIEW tool for each application. You'll review classical DSP and other essential topics, including control system theory, curve fitting, and linear algebra. Along the way, you'll use LabVIEW's tools to construct practical applications that illuminate: Arbitrary waveform generation. Aliasing, signal separation, and their effects. The separation of two signals close in frequency but differing in amplitudes. Predicting the cost of producing a product in multiple quantities. Noise removal in biomedical applications. Determination of system stability and design linear state feedback. The accompanying website contains the complete LabVIEW FDS evaluation version, including analysis library, relevant elements of the G Math Toolkit, and complete demos of several other important products, including the Digital Filter Design Toolkit and the Signal Processing Suite. Whether you're a professional or student, LabVIEW represents an extraordinary opportunity to streamline signal processing and control systems projects--and this book is all you need to get started.

Digital Signal Processing System Design

LabVIEW-Based Hybrid Programming

Author: Nasser Kehtarnavaz

Publisher: Elsevier

ISBN: 9780080483450

Category: Technology & Engineering

Page: 344

View: 2328

Digital Signal Processing System Design combines textual and graphical programming to form a hybrid programming approach, enabling a more effective means of building and analyzing DSP systems. The hybrid programming approach allows the use of previously developed textual programming solutions to be integrated into LabVIEW’s highly interactive and visual environment, providing an easier and quicker method for building DSP systems. This book is an ideal introduction for engineers and students seeking to develop DSP systems in quick time. Features: The only DSP laboratory book that combines textual and graphical programming 12 lab experiments that incorporate C/MATLAB code blocks into the LabVIEW graphical programming environment via the MathScripting feature Lab experiments covering basic DSP implementation topics including sampling, digital filtering, fixed-point data representation, frequency domain processing Interesting applications using the hybrid programming approach, such as a software-defined radio system, a 4-QAM Modem, and a cochlear implant simulator The only DSP project book that combines textual and graphical programming 12 Lab projects that incorporate MATLAB code blocks into the LabVIEW graphical programming environment via the MathScripting feature Interesting applications such as the design of a cochlear implant simulator and a software-defined radio system

Digital Signal Processing System-Level Design Using LabVIEW

Author: Nasser Kehtarnavaz,Namjin Kim

Publisher: Elsevier

ISBN: 9780080477244

Category: Technology & Engineering

Page: 304

View: 4511

LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) developed by National Instruments is a graphical programming environment. Its ease of use allows engineers and students to streamline the creation of code visually, leaving time traditionally spent on debugging for true comprehension of DSP. This book is perfect for practicing engineers, as well as hardware and software technical managers who are familiar with DSP and are involved in system-level design. With this text, authors Kehtarnavaz and Kim have also provided a valuable resource for students in conventional engineering courses. The integrated lab exercises create an interactive experience which supports development of the hands-on skills essential for learning to navigate the LabVIEW program. Digital Signal Processing System-Level Design Using LabVIEW is a comprehensive tool that will greatly accelerate the DSP learning process. Its thorough examination of LabVIEW leaves no question unanswered. LabVIEW is the program that will demystify DSP and this is the book that will show you how to master it. * A graphical programming approach (LabVIEW) to DSP system-level design * DSP implementation of appropriate components of a LabVIEW designed system * Providing system-level, hands-on experiments for DSP lab or project courses

Digital Signal Processing Laboratory

LabVIEW-Based FPGA Implementation

Author: Nasser Kehtarnavaz,Sidharth Mahotra

Publisher: Universal-Publishers

ISBN: 1599425505

Category: Computers

Page: 467

View: 7352

Field Programmable Gate Arrays (FPGAs) are increasingly becoming the platform of choice to implement DSP algorithms. This book is designed to allow DSP students or DSP engineers to achieve FPGA implementation of DSP algorithms in a one-semester DSP laboratory course or in a short design cycle time based on the LabVIEW FPGA Module. Features: - The first DSP laboratory book that uses the FPGA platform instead of the DSP platform for implementation of DSP algorithms - Incorporating introductions to LabVIEW and VHDL - Lab experiments covering FPGA implementation of basic DSP topics including convolution, digital filtering, fixed-point data representation, adaptive filtering, frequency domain processing - Hardware FPGA implementation applications including wavelet transform, software-defined radio, and MP3 player - Website providing downloadable LabVIEW FPGA codes

DSP for MATLABTM and LabVIEWTM I

Fundamentals of Discrete Signal Processing

Author: Forester W. Isen

Publisher: Morgan & Claypool Publishers

ISBN: 1598298917

Category: Technology & Engineering

Page: 213

View: 3818

This book is Volume I of the series DSP for MATLABTM and LabVIEWTM. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form here will run on both MATLAB and LabVIEW. Volume I consists of four chapters. The first chapter gives a brief overview of the field of digital signal processing. This is followed by a chapter detailing many useful signals and concepts, including convolution, recursion, difference equations, LTI systems, etc. The third chapter covers conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, conversion from one sample rate to another, waveform generation at various sample rates from stored wave data, and Mu-law compression. The fourth and final chapter of the present volume introduces the reader to many important principles of signal processing, including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work, preparing the reader for Volumes II and III, which provide, respectively, detailed coverage of discrete frequency transforms (including the Discrete Time Fourier Transform, the Discrete Fourier Transform, and the z-Transform) and digital filter design (FIR design using Windowing, Frequency Sampling, and Optimum Equiripple techniques, and Classical IIR design). Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEW Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Table of Contents: An Overview of DSP / Discrete Signals and Concepts / Sampling and Binary Representation / Transform and Filtering Principles

LabVIEW Digital Signal Processing

and Digital Communications

Author: Cory Clark

Publisher: McGraw Hill Professional

ISBN: 0071469664

Category: Technology & Engineering

Page: 205

View: 3933

LabVIEW Digital Signal Processing teaches engineers how to use the graphical programming language to create virtual instruments to handle to most sophisticated DSP applications. From basic filters to complex sampling mechanisms to signal generators, LabVIEW virtual instruments (VIs) can make DSP work faster and much less expensive – a particular boon to the many engineers working on cutting edge communications systems.

Vi Instru Using Labview

Author: Gupta,Gupta & John

Publisher: Tata McGraw-Hill Education

ISBN: 9780070590991

Category: Computer graphics

Page: 209

View: 4074

Virtual Bio-Instrumentation

Biomedical, Clinical, and Healthcare Applications in LabVIEW

Author: Jon B. Olansen,Eric Rosow

Publisher: Pearson Education

ISBN: 013244156X

Category: Technology & Engineering

Page: 608

View: 9268

This is the eBook version of the print title. The eBook edition does not provide access to the content of the CD ROMs that accompanies the print book. Bringing the power of virtual instrumentation to the biomedical community. Applications across diverse medical specialties Detailed design guides for LabVIEW and BioBench applications Hands-on problem-solving throughout the book Laboratory, clinical, and healthcare applications Numerous VI's with source code, plus several demos, are available on the book's web site Virtual instrumentation allows medical researchers and practitioners to combine the traditional diagnostic tools with advanced technologies such as databases, Active X, and the Internet. In both laboratory and clinical environments, users can interact with a wealth of disparate systems, facilitating better, faster, and more informed decision making. Virtual Bio-Instrumentation: Biomedical, Clinical, and Healthcare Applications in LabVIEW is the first book of its kind to apply VI technology to the biomedical field. Hands-on problems throughout the book demonstrate immediate practical uses Examples cover a variety of medical specialties Detailed design instructions give the inside view of LabVIEW and BioBench applications Both students and practicing professionals will appreciate the practical applications offered for modeling fundamental physiology, advanced systems analysis, medical device development and testing, and even hospital management and clinical engineering scenarios.

DSP for MATLABTM and LabVIEWTM IV

LMS Adaptive Filters

Author: Forester W. Isen

Publisher: Morgan & Claypool Publishers

ISBN: 159829900X

Category: Technology & Engineering

Page: 127

View: 8753

This book is Volume IV of the series DSP for MATLABTM and LabVIEWTM. Volume IV is an introductory treatment of LMS Adaptive Filtering and applications, and covers cost functions, performance surfaces, coefficient perturbation to estimate the gradient, the LMS algorithm, response of the LMS algorithm to narrow-band signals, and various topologies such as ANC (Active Noise Cancelling) or system modeling, Noise Cancellation, Interference Cancellation, Echo Cancellation (with single- and dual-H topologies), and Inverse Filtering/Deconvolution. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts here will run on both MATLABTM and LabVIEWTM. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEWTM Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Volume I consists of four chapters that collectively set forth a brief overview of the field of digital signal processing, useful signals and concepts (including convolution, recursion, difference equations, LTI systems, etc), conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, sample rate conversion and Mu-law compression, and signal processing principles including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4 of Volume I, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work. Volume II provides detailed coverage of discrete frequency transforms, including a brief overview of common frequency transforms, both discrete and continuous, followed by detailed treatments of the Discrete Time Fourier Transform (DTFT), the z-Transform (including definition and properties, the inverse z-transform, frequency response via z-transform, and alternate filter realization topologies including Direct Form, Direct Form Transposed, Cascade Form, Parallel Form, and Lattice Form), and the Discrete Fourier Transform (DFT) (including Discrete Fourier Series, the DFT-IDFT pair, DFT of common signals, bin width, sampling duration, and sample rate, the FFT, the Goertzel Algorithm, Linear, Periodic, and Circular convolution, DFT Leakage, and computation of the Inverse DFT). Volume III covers digital filter design, including the specific topics of FIR design via windowed-ideal-lowpass filter, FIR highpass, bandpass, and bandstop filter design from windowed-ideal lowpass filters, FIR design using the transition-band-optimized Frequency Sampling technique (implemented by Inverse-DFT or Cosine/Sine Summation Formulas), design of equiripple FIRs of all standard types including Hilbert Transformers and Differentiators via the Remez Exchange Algorithm, design of Butterworth, Chebyshev (Types I and II), and Elliptic analog prototype lowpass filters, conversion of analog lowpass prototype filters to highpass, bandpass, and bandstop filters, and conversion of analog filters to digital filters using the Impulse Invariance and Bilinear Transform techniques. Certain filter topologies specific to FIRs are also discussed, as are two simple FIR types, the Comb and Moving Average filters. Table of Contents: Introduction To LMS Adaptive Filtering / Applied Adaptive Filtering

LabVIEW Graphical Programming

Author: Gary Johnson,Richard Jennings

Publisher: McGraw Hill Professional

ISBN: 0071451463

Category: Technology & Engineering

Page: 752

View: 4853

LabVIEW is an award-winning programming language that allows engineers to create "virtual" instruments on their desktop. This new edition details the powerful features of LabVIEW 8.0. Written in a highly accessible and readable style, LabVIEW Graphical Programming illustrates basic LabVIEW programming techniques, building up to advanced programming concepts. New to this edition is study material for the CLAD and CLD exams.

DSP for MATLABTM and LabVIEWTM II

Discrete Frequency Transforms

Author: Forester W. Isen

Publisher: Morgan & Claypool Publishers

ISBN: 1598298941

Category: Technology & Engineering

Page: 215

View: 5957

This book is Volume II of the series DSP for MATLABTM and LabVIEWTM. This volume provides detailed coverage of discrete frequency transforms, including a brief overview of common frequency transforms, both discrete and continuous, followed by detailed treatments of the Discrete Time Fourier Transform (DTFT), the z -Transform (including definition and properties, the inverse z -transform, frequency response via z-transform, and alternate filter realization topologies (including Direct Form, Direct Form Transposed, Cascade Form, Parallel Form, and Lattice Form), and the Discrete Fourier Transform (DFT) (including Discrete Fourier Series, the DFT-IDFT pair, DFT of common signals, bin width, sampling duration and sample rate, the FFT, the Goertzel Algorithm, Linear, Periodic, and Circular convolution, DFT Leakage, and computation of the Inverse DFT). The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form here will run on both MATLABTM and LabVIEWTM. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEWTM Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer. Volume I consists of four chapters that collectively set forth a brief overview of the field of digital signal processing, useful signals and concepts (including convolution, recursion, difference equations, LTI systems, etc), conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, sample rate conversion and Mu-law compression, and signal processing principles including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4 of Volume I, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work, preparing the reader for the present volume (Volume II). Volume III of the series covers digital filter design (FIR design using Windowing, Frequency Sampling, and Optimum Equiripple techniques, and Classical IIR design) and Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications. Table of Contents: The Discrete Time Fourier Transform / The z-Transform / The DFT

Messdatenverarbeitung mit LabVIEW

Author: Thomas Beier,Thomas Mederer

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 3446445404

Category: Mathematics

Page: 259

View: 3603

Dieses praxisorientierte Lehrbuch behandelt die wichtigsten Themen der Messdatenverarbeitung. Die gesamte Messkette vom Sensor über die Signalkonditionierung, die Abtastung und Digitalisierung bis zum Rechner wird beschrieben. Darüber hinaus wird der Weg vom digitalen zum analogen Signal behandelt. Die Verarbeitung der Signale im Rechner wird anhand von einfachen Filterentwürfen erläutert. Im Rahmen der PC-Messtechnik wird die Programmierung verschiedenster Messaufgaben unter Einsatz von Messgeräten und USB-Messmodulen mit LabVIEW gezeigt. Das Buch enthält zahlreiche Übungen und Beispiele. Es werden keine mathematischen Kenntnisse vorausgesetzt. Aus dem Inhalt: Digital-Analog-Umsetzer; Analog-Digital-Umsetzer; Signalabtastung und Signalrekonstruktion; Messwerterfassungssysteme; Grundlagen der digitalen Signalverarbeitung; Digitale Filter; Diskrete Fourier-Transformation; Digitale Signalprozessoren; PC-Messtechnik

Embedded Signal Processing with the Micro Signal Architecture

Author: Woon-Seng Gan,Sen M. Kuo

Publisher: John Wiley & Sons

ISBN: 0470112263

Category: Science

Page: 488

View: 6571

This is a real-time digital signal processing textbook using the latest embedded Blackfin processor Analog Devices, Inc (ADI). 20% of the text is dedicated to general real-time signal processing principles. The remaining text provides an overview of the Blackfin processor, its programming, applications, and hands-on exercises for users. With all the practical examples given to expedite the learning development of Blackfin processors, the textbook doubles as a ready-to-use user's guide. The book is based on a step-by-step approach in which readers are first introduced to the DSP systems and concepts. Although, basic DSP concepts are introduced to allow easy referencing, readers are recommended to complete a basic course on "Signals and Systems" before attempting to use this book. This is also the first textbook that illustrates graphical programming for embedded processor using the latest LabVIEW Embedded Module for the ADI Blackfin Processors. A solutions manual is available for adopters of the book from the Wiley editorial department.

Computer and Computing Technologies in Agriculture IV

4th IFIP TC 12 International Conference, CCTA 2010, Nanchang, China, October 22-25, 2010, Selected Papers

Author: Daoliang Li,Yande Liu,Yingyi Chen

Publisher: Springer

ISBN: 3642183697

Category: Computers

Page: 774

View: 8072

This book constitutes Part IV of the refereed four-volume post-conference proceedings of the 4th IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture, CCTA 2010, held in Nanchang, China, in October 2010. The 352 revised papers presented were carefully selected from numerous submissions. They cover a wide range of interesting theories and applications of information technology in agriculture, including simulation models and decision-support systems for agricultural production, agricultural product quality testing, traceability and e-commerce technology, the application of information and communication technology in agriculture, and universal information service technology and service systems development in rural areas.

LabVIEW

A Developer's Guide to Real World Integration

Author: Ian Fairweather,Anne Brumfield

Publisher: CRC Press

ISBN: 1439839816

Category: Computers

Page: 277

View: 1365

LabVIEWTM has become one of the preeminent platforms for the development of data acquisition and data analysis programs. LabVIEWTM: A Developer’s Guide to Real World Integration explains how to integrate LabVIEW into real-life applications. Written by experienced LabVIEW developers and engineers, the book describes how LabVIEW has been pivotal in solving real-world challenges. Each chapter is self-contained and demonstrates the power and simplicity of LabVIEW in various applications, from image processing to solar tracking systems. Many of the chapters explore how exciting new technologies can be implemented in LabVIEW to enable novel solutions to new or existing problems. The text also presents novel tricks and tips for integrating LabVIEW with third-party hardware and software. Ideal for LabVIEW users who develop stand-alone applications, this down-to-earth guide shows how LabVIEW provides solutions to a variety of application problems. It includes projects and virtual instrumentation for most of the programs and utilities described. Many of the authors’ own software contributions are available on the accompanying CD-ROM.

Measurement and Instrumentation

Theory and Application

Author: Alan S Morris,Reza Langari

Publisher: Academic Press

ISBN: 0128011327

Category: Technology & Engineering

Page: 726

View: 4670

Measurement and Instrumentation: Theory and Application, Second Edition, introduces undergraduate engineering students to measurement principles and the range of sensors and instruments used for measuring physical variables. This updated edition provides new coverage of the latest developments in measurement technologies, including smart sensors, intelligent instruments, microsensors, digital recorders, displays, and interfaces, also featuring chapters on data acquisition and signal processing with LabVIEW from Dr. Reza Langari. Written clearly and comprehensively, this text provides students and recently graduated engineers with the knowledge and tools to design and build measurement systems for virtually any engineering application. Provides early coverage of measurement system design to facilitate a better framework for understanding the importance of studying measurement and instrumentation Covers the latest developments in measurement technologies, including smart sensors, intelligent instruments, microsensors, digital recorders, displays, and interfaces Includes significant material on data acquisition and signal processing with LabVIEW Extensive coverage of measurement uncertainty aids students’ ability to determine the accuracy of instruments and measurement systems

Image Processing with LabVIEW and IMAQ Vision

Author: Thomas Klinger

Publisher: Prentice Hall Professional

ISBN: 9780130474155

Category: Technology & Engineering

Page: 319

View: 2694

This book brings together everything you need to achieve superior results with PC-based image processing and analysis. Thomas Klinger combines a highly accessible overview of the field's key concepts, tools, and techniques; the first expert introduction to NI's breakthrough IMAQ Vision software; and several start-to-finish application case studies. You also get an extensive library of code and image samples, as well as a complete trial version of IMAQ Vision for Windows.

DSP for MATLABTM and LabVIEWTM III

Digital Filter Design

Author: Forester W. Isen

Publisher: Morgan & Claypool Publishers

ISBN: 1598298976

Category: Technology & Engineering

Page: 239

View: 5859

This book is Volume III of the series DSP for MATLABTM and LabVIEWTM. Volume III covers digital filter design, including the specific topics of FIR design via windowed-ideal-lowpass filter, FIR highpass, bandpass, and bandstop filter design from windowed-ideal lowpass filters, FIR design using the transition-band-optimized Frequency Sampling technique (implemented by Inverse-DFT or Cosine/Sine Summation Formulas), design of equiripple FIRs of all standard types including Hilbert Transformers and Differentiators via the Remez Exchange Algorithm, design of Butterworth, Chebyshev (Types I and II), and Elliptic analog prototype lowpass filters, conversion of analog lowpass prototype filters to highpass, bandpass, and bandstop filters, and conversion of analog filters to digital filters using the Impulse Invariance and Bilinear Transform techniques. Certain filter topologies specific to FIRs are also discussed, as are two simple FIR types, the Comb and Moving Average filters. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form here will run on both MATLABTM and LabVIEWTM. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEWTM Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Volume I consists of four chapters that collectively set forth a brief overview of the field of digital signal processing, useful signals and concepts (including convolution, recursion, difference equations, LTI systems, etc), conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, sample rate conversion and Mu-law compression, and signal processing principles including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter four of Volume I, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work. Volume II provides detailed coverage of discrete frequency transforms, including a brief overview of common frequency transforms, both discrete and continuous, followed by detailed treatments of the Discrete Time Fourier Transform (DTFT), the z-Transform (including definition and properties, the inverse z-transform, frequency response via z-transform, and alternate filter realization topologies including Direct Form, Direct Form Transposed, Cascade Form, Parallel Form, and Lattice Form), and the Discrete Fourier Transform (DFT) (including Discrete Fourier Series, the DFT-IDFT pair, DFT of common signals, bin width, sampling duration, and sample rate, the FFT, the Goertzel Algorithm, Linear, Periodic, and Circular convolution, DFT Leakage, and computation of the Inverse DFT). Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications, and covers cost functions, performance surfaces, coefficient perturbation to estimate the gradient, the LMS algorithm, response of the LMS algorithm to narrow-band signals, and various topologies such as ANC (Active Noise Cancelling) or system modeling, Periodic Signal Removal/Prediction/Adaptive Line Enhancement (ALE), Interference Cancellation, Echo Cancellation (with single- and dual-H topologies), and Inverse Filtering/Deconvolution/Equalization. Table of Contents: Principles of FIR Design / FIR Design Techniques / Classical IIR Design

Digitale Signalverarbeitung

mit einer Einführung in die kontinuierlichen Signale und Systeme

Author: Daniel von Grünigen

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 3446439919

Category: Technology & Engineering

Page: 376

View: 6844

Die digitale Signalverarbeitung, d.h. das Verarbeiten von Signalen mit digitalen Rechnern, ist eine sehr aktuelle Disziplin. Dank leistungsfähiger und preiswerter Computer können heute umfangreiche Probleme aus der Kommunikations-, Mess- und Regelungstechnik sowie der Audio-, Sprach-, Bildverarbeitung u.a. gelöst werden, deren Lösung vor einigen Jahren noch undenkbar war. Das vorliegende Buch bietet eine Einführung in die kontinuierlichen Signale und Systeme und vermittelt umfassend die Grundlagen der digitalen Signalverarbeitung. Es richtet sich an Studentinnen und Studenten, die in die analoge und digitale Signalverarbeitung einsteigen möchten, aber auch an Ingenieurinnen und Ingenieure, welche Aufgaben aus dem Bereich der diskreten Fourier-Transformation, der diskreten Korrelation, der digitalen Filter und der digitalen Signalgeneratoren zu lösen haben. Der Stoff wird so anschaulich wie möglich, aber dennoch wissenschaftlich korrekt präsentiert. Viele Anwendungsbeispiele, Zeichnungen und Übungen mit Lösungen ermöglichen ein spannendes Einarbeiten in die anspruchsvolle Materie. MATLAB ist ein Programm, das in der digitalen Signalverarbeitung häufig eingesetzt wird. Viele Übungen sind mit diesem Programm ausgeführt und im Internet verfügbar. Die 5. Auflage wurde komplett aktualisiert und um weitere Themen, Beispiele und Aufgaben ergänzt. Aus dem Inhalt: Einführung; Digitalfilter; Diskrete Fourier-Transformation; Kontinuierliche Signale und Systeme; Signalabtastung und Signalrekonstruktion; Signalgeneratoren; Zeitdiskrete Signale und Systeme; Zeitdiskrete stochastische Signale Auf der Website http://labs.hti.bfh.ch/dsv finden Sie u.a. Übungen, die Lösungen zu den Aufgabenstellungen sowie ein Entwurfs- und Simulationsprogramm für Digitalfilter und Signalgeneratoren.