LabVIEW for Engineers

Author: Ronald W. Larsen

Publisher: Prentice Hall

ISBN: 9780136094296

Category: Technology & Engineering

Page: 391

View: 3299

Based on the most current release of LabVIEW, LabVIEW for Engineers is designed for readers with little to no experience using LabVIEW. Part of Prentice Hall's ESource Program: ESource enables instructors to choose individual chapters from published books in the Prentice Hall ESource Series. The content available in this online book-building system covers topics in engineering problem-solving and design, graphics, and computer applications. Using this program, instructors can create a unique text for the introduction to engineering course that exactly matches their content requirements and teaching approach. www.prenhall.com/esource.

Hands-On Introduction to LabVIEW for Scientists and Engineers

Author: John Essick

Publisher: Oxford University Press

ISBN: 019021189X

Category: Computer graphics

Page: 688

View: 8270

Hands-On Introduction to LabVIEW for Scientists and Engineers, Third Edition, explores practical programming solutions for carrying out interesting and relevant projects. Readers--who are assumed to have no prior computer programming or LabVIEW background--will begin writing meaningful programs in the first few pages.

LabVIEW for Electrical Engineers and Technologists

LabVIEW Programming Tutorial with Practical Electrical Examples

Author: Stephen Philip Tubbs

Publisher: N.A

ISBN: 9780981975337

Category: Technology & Engineering

Page: 137

View: 1548

LabVIEW has the market on instrumentation to personal computer data retrieval and data manipulation. It is also capable of controlling instrumentation and equipment. It has few competitors. Monster.com has hundreds of advertisements for jobs requiring LabVIEW. The first purpose of this book is to quickly teach an electrical engineer or technologist how to use LabVIEW. The reader learns by example. Complete keystroke-to-keystroke details are provided for problem solution and documentation. Half of this book's examples demonstrate LabVIEW's abilities as a stand-alone programming language for performing numeric electrical computations. The other half gives examples with simulated and actual sensor and control circuits. The simplest and most basic uses of LabVIEW are in the first examples. The reader could use the examples' solutions as starting models for his own programs. It is assumed that the reader has an analytical electrical background of the sort that would be gained in a university electrical engineering or electrical engineering technology program. LabVIEW is available in a free 30 day full featured evaluation version. Its key features can be learned in 30 days.

A Software Engineering Approach to LabVIEW

Author: Jon Conway,Steve Watts

Publisher: Prentice Hall Professional

ISBN: 9780130093653

Category: Computers

Page: 221

View: 6818

Create more robust, more flexible LabVIEW applications--through software design principles! Writing LabVIEW software to perform a complex task is never easy--especially when those last-minute feature requests cause a complexity explosion in your system, forcing you to rework much of your code! Jon Conway and Steve Watts offer a better solution: LCOD-LabVIEW Component Oriented Design--which, for the first time, applies the theories and principles of software design to LabVIEW programming. The material is presented in a lighthearted, engaging manner that makes learning enjoyable, even if you're not a computer scientist. LCOD software engineering techniques make your software more robust and better able to handle complexity--by making it simpler! Even large, industrial-grade applications become manageable. Design to embrace flexibility first, making changes and bug fixes much less painful Pragmatic discussion of the authors' tried and tested techniques, written by--and for--working programmers Covers design principles; LCOD overview, implementation, and complementary techniques; engineering essentials; style issues; and more Complete with practical advice on requirements gathering, prototyping, user interface design, and rich with examples Work through an example LCOD project (all code included on companion Web site) to tie the lessons together This book is intended for test engineers, system integrators, electronics engineers, software engineers, and other intermediate to advanced LabVIEW programmers. None of the methods discussed are complex, so users can benefit as soon as they are proficient with the syntax of LabVIEW.Go to the companion Web site located at http: //author.phptr.com/watts/ for full source code and book updates.

Virtual Bio-Instrumentation

Biomedical, Clinical, and Healthcare Applications in LabVIEW

Author: Jon B. Olansen,Eric Rosow

Publisher: Pearson Education

ISBN: 013244156X

Category: Technology & Engineering

Page: 608

View: 2904

This is the eBook version of the print title. The eBook edition does not provide access to the content of the CD ROMs that accompanies the print book. Bringing the power of virtual instrumentation to the biomedical community. Applications across diverse medical specialties Detailed design guides for LabVIEW and BioBench applications Hands-on problem-solving throughout the book Laboratory, clinical, and healthcare applications Numerous VI's with source code, plus several demos, are available on the book's web site Virtual instrumentation allows medical researchers and practitioners to combine the traditional diagnostic tools with advanced technologies such as databases, Active X, and the Internet. In both laboratory and clinical environments, users can interact with a wealth of disparate systems, facilitating better, faster, and more informed decision making. Virtual Bio-Instrumentation: Biomedical, Clinical, and Healthcare Applications in LabVIEW is the first book of its kind to apply VI technology to the biomedical field. Hands-on problems throughout the book demonstrate immediate practical uses Examples cover a variety of medical specialties Detailed design instructions give the inside view of LabVIEW and BioBench applications Both students and practicing professionals will appreciate the practical applications offered for modeling fundamental physiology, advanced systems analysis, medical device development and testing, and even hospital management and clinical engineering scenarios.

Programming Arduino with LabVIEW

Author: Marco Schwartz,Oliver Manickum

Publisher: Packt Publishing Ltd

ISBN: 1849698236

Category: Computers

Page: 102

View: 742

If you already have some experience with LabVIEW and want to apply your skills to control physical objects and make measurements using the Arduino sensor, this book is for you. Prior knowledge of Arduino and LabVIEW is essential to fully understand the projects detailed in this book.

DSP for MATLAB and LabVIEW: Fundamentals of discrete signal processing

Author: Forester W. Isen

Publisher: Morgan & Claypool Publishers

ISBN: 1598298909

Category: Technology & Engineering

Page: 199

View: 8077

This book is Volume I of the series DSP for MATLAB and LabVIEW . The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form (available at www.morganclaypool.com/page/isen) will run on both MATLAB and LabVIEW. Volume I consists of four chapters. The first chapter gives a brief overview of the field of digital signal processing. This is followed by a chapter detailing many useful signals and concepts, including convolution, recursion, difference equations, LTI systems, etc. The third chapter covers conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, conversion from one sample rate to another, waveform generation at various sample rates from stored wave data, and Mu-law compression. The fourth and final chapter of the present volume introduces the reader to many important principles of signal processing, including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work, preparing the reader for Volumes II and III, which provide, respectively, detailed coverage of discrete frequency transforms (including the Discrete Time Fourier Transform, the Discrete Fourier Transform, and the z-Transform) and digital filter design (FIR design using Windowing, Frequency Sampling, and Optimum Equiripple techniques, and Classical IIR design). Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEW Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Table of Contents: An Overview of DSP / Discrete Signals and Concepts / Sampling and Binary Representation / Transform and Filtering Principles"

DSP for MATLAB and LabVIEW: LMS adaptive filtering

Author: Forester W. Isen

Publisher: Morgan & Claypool Publishers

ISBN: 1598298992

Category: Technology & Engineering

Page: 109

View: 7952

This book is Volume IV of the series DSP for MATLABâ„¢ and LabVIEWâ„¢. Volume IV is an introductory treatment of LMS Adaptive Filtering and applications, and covers cost functions, performance surfaces, coefficient perturbation to estimate the gradient, the LMS algorithm, response of the LMS algorithm to narrow-band signals, and various topologies such as ANC (Active Noise Cancelling) or system modeling, Noise Cancellation, Interference Cancellation, Echo Cancellation (with single- and dual-H topologies), and Inverse Filtering/Deconvolution. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form (available via the internet at www.morganclaypool.com/page/isen) will run on both MATLABâ„¢ and LabVIEWâ„¢. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEWâ„¢ Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Volume I consists of four chapters that collectively set forth a brief overview of the field of digital signal processing, useful signals and concepts (including convolution, recursion, difference equations, LTI systems, etc), conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, sample rate conversion and Mu-law compression, and signal processing principles including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4 of Volume I, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work. Volume II provides detailed coverage of discrete frequency transforms, including a brief overview of common frequency transforms, both discrete and continuous, followed by detailed treatments of the Discrete Time Fourier Transform (DTFT), the z-Transform (including definition and properties, the inverse z-transform, frequency response via z-transform, and alternate filter realization topologies including Direct Form, Direct Form Transposed, Cascade Form, Parallel Form, and Lattice Form), and the Discrete Fourier Transform (DFT) (including Discrete Fourier Series, the DFT-IDFT pair, DFT of common signals, bin width, sampling duration, and sample rate, the FFT, the Goertzel Algorithm, Linear, Periodic, and Circular convolution, DFT Leakage, and computation of the Inverse DFT). Volume III covers digital filter design, including the specific topics of FIR design via windowed-ideal-lowpass filter, FIR highpass, bandpass, and bandstop filter design from windowed-ideal lowpass filters, FIR design using the transition-band-optimized Frequency Sampling technique (implemented by Inverse-DFT or Cosine/Sine Summation Formulas), design of equiripple FIRs of all standard types including Hilbert Transformers and Differentiators via the Remez Exchange Algorithm, design of Butterworth, Chebyshev (Types I and II), and Elliptic analog prototype lowpass filters, conversion of analog lowpass prototype filters to highpass, bandpass, and bandstop filters, and conversion of analog filters to digital filters using the Impulse Invariance and Bilinear Transform techniques. Certain filter topologies specific to FIRs are also discussed, as are two simple FIR types, the Comb and Moving Average filters.

DSP for MATLAB and LabVIEW: Digital filter design

Author: Forester W. Isen

Publisher: Morgan & Claypool Publishers

ISBN: 1598298968

Category: Technology & Engineering

Page: 220

View: 6032

This book is Volume III of the series DSP for MATLABâ„¢ and LabVIEWâ„¢. Volume III covers digital filter design, including the specific topics of FIR design via windowed-ideal-lowpass filter, FIR highpass, bandpass, and bandstop filter design from windowed-ideal lowpass filters, FIR design using the transition-band-optimized Frequency Sampling technique (implemented by Inverse-DFT or Cosine/Sine Summation Formulas), design of equiripple FIRs of all standard types including Hilbert Transformers and Differentiators via the Remez Exchange Algorithm, design of Butterworth, Chebyshev (Types I and II), and Elliptic analog prototype lowpass filters, conversion of analog lowpass prototype filters to highpass, bandpass, and bandstop filters, and conversion of analog filters to digital filters using the Impulse Invariance and Bilinear Transform techniques. Certain filter topologies specific to FIRs are also discussed, as are two simple FIR types, the Comb and Moving Average filters. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form (available via the internet at www.morganclaypool.com/page/isen) will run on both MATLABâ„¢ and LabVIEWâ„¢.The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEWâ„¢ Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Volume I consists of four chapters that collectively set forth a brief overview of the field of digital signal processing, useful signals and concepts (including convolution, recursion, difference equations, LTI systems, etc), conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, sample rate conversion and Mu-law compression, and signal processing principles including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter four of Volume I, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work. Volume II provides detailed coverage of discrete frequency transforms, including a brief overview of common frequency transforms, both discrete and continuous, followed by detailed treatments of the Discrete Time Fourier Transform (DTFT), the z-Transform (including definition and properties, the inverse z-transform, frequency response via z-transform, and alternate filter realization topologies including Direct Form, Direct Form Transposed, Cascade Form, Parallel Form, and Lattice Form), and the Discrete Fourier Transform (DFT) (including Discrete Fourier Series, the DFT-IDFT pair, DFT of common signals, bin width, sampling duration, and sample rate, the FFT, the Goertzel Algorithm, Linear, Periodic, and Circular convolution, DFT Leakage, and computation of the Inverse DFT). Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications, and covers cost functions, performance surfaces, coefficient perturbation to estimate the gradient, the LMS algorithm, response of the LMS algorithm to narrow-band signals, and various topologies such as ANC (Active Noise Cancelling) or system modeling, Periodic Signal Removal/Prediction/Adaptive Line Enhancement (ALE), Interference Cancellation, Echo Cancellation (with single- and dual-H topologies), and Inverse Filtering/Deconvolution/Equalization.

DSP for MATLAB and LabVIEW: Fundamentals of discrete frequency transforms

Author: Forester W. Isen

Publisher: Morgan & Claypool Publishers

ISBN: 1598298933

Category: Technology & Engineering

Page: 217

View: 8319

This book is Volume II of the series DSP for MATLABâ„¢ and LabVIEWâ„¢. This volume provides detailed coverage of discrete frequency transforms, including a brief overview of common frequency transforms, both discrete and continuous, followed by detailed treatments of the Discrete Time Fourier Transform (DTFT), the z -Transform (including definition and properties, the inverse z -transform, frequency response via z-transform, and alternate filter realization topologies (including Direct Form, Direct Form Transposed, Cascade Form, Parallel Form, and Lattice Form), and the Discrete Fourier Transform (DFT) (including Discrete Fourier Series, the DFT-IDFT pair, DFT of common signals, bin width, sampling duration and sample rate, the FFT, the Goertzel Algorithm, Linear, Periodic, and Circular convolution, DFT Leakage, and computation of the Inverse DFT). The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form (available via the internet at http://www.morganclaypool.com/page/isen) will run on both MATLABâ„¢ and LabVIEWâ„¢. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEWâ„¢ Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer. Volume I consists of four chapters that collectively set forth a brief overview of the field of digital signal processing, useful signals and concepts (including convolution, recursion, difference equations, LTI systems, etc), conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, sample rate conversion and Mu-law compression, and signal processing principles including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4 of Volume I, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work, preparing the reader for the present volume (Volume II). Volume III of the series covers digital filter design (FIR design using Windowing, Frequency Sampling, and Optimum Equiripple techniques, and Classical IIR design) and Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications.

Software Engineering and Knowledge Engineering: Theory and Practice

Selected papers from 2012 International Conference on Software Engineering, Knowledge Engineering and Information Engineering (SEKEIE 2012)

Author: Wei Zhang

Publisher: Springer Science & Business Media

ISBN: 3642294553

Category: Computers

Page: 894

View: 9133

2012 International Conference on Software Engineering, Knowledge Engineering and Information Engineering (SEKEIE 2012) will be held in Macau, April 1-2, 2012 . This conference will bring researchers and experts from the three areas of Software Engineering, Knowledge Engineering and Information Engineering together to share their latest research results and ideas. This volume book covered significant recent developments in the Software Engineering, Knowledge Engineering and Information Engineering field, both theoretical and applied. We are glad this conference attracts your attentions, and thank your support to our conference. We will absorb remarkable suggestion, and make our conference more successful and perfect.

Automation, Communication and Cybernetics in Science and Engineering 2011/2012

Author: Sabina Jeschke,Ingrid Isenhardt,Frank Hees,Klaus Henning

Publisher: Springer Science & Business Media

ISBN: 3642333893

Category: Computers

Page: 1154

View: 4951

The book is the follow-up to its predecessor “Automation, Communication and Cybernetics in Science and Engineering 2009/2010” and includes a representative selection of all scientific publications published between 07/2011 and 06/2012 in various books, journals and conference proceedings by the researchers of the following institute cluster: IMA - Institute of Information Management in Mechanical Engineering ZLW - Center for Learning and Knowledge Management IfU - Associated Institute for Management Cybernetics Faculty of Mechanical Engineering, RWTH Aachen University Innovative fields of application, such as cognitive systems, autonomous truck convoys, telemedicine, ontology engineering, knowledge and information management, learning models and technologies, organizational development and management cybernetics are presented.

VIRTUAL INSTRUMENTATION USING LABVIEW

Author: JOVITHA JEROME

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120340302

Category: Technology & Engineering

Page: 416

View: 3382

This book provides a practical and accessible understanding of the fundamental principles of virtual instrumentation. It explains how to acquire, analyze and present data using LabVIEW (Laboratory Virtual Instrument Engineering Workbench) as the application development environment. The book introduces the students to the graphical system design model and its different phases of functionality such as design, prototyping and deployment. It explains the basic concepts of graphical programming and highlights the features and techniques used in LabVIEW to create Virtual Instruments (VIs). Using the technique of modular programming, the book teaches how to make a VI as a subVI. Arrays, clusters, structures and strings in LabVIEW are covered in detail. The book also includes coverage of emerging graphical system design technologies for real-world applications. In addition, extensive discussions on data acquisition, image acquisition, motion control and LabVIEW tools are presented. This book is designed for undergraduate and postgraduate students of instrumentation and control engineering, electronics and instrumentation engineering, electrical and electronics engineering, electronics and communication engineering, and computer science and engineering. It will be also useful to engineering students of other disciplines where courses in virtual instrumentation are offered. Key Features : Builds the concept of virtual instrumentation by using clear-cut programming elements. Includes a summary that outlines important learning points and skills taught in the chapter. Offers a number of solved problems to help students gain hands-on experience of problem solving. Provides several chapter-end questions and problems to assist students in reinforcing their knowledge.

Effective LabVIEW Programming

(*new file uploaded 02/19/15)

Author: Thomas Bress

Publisher: NTS Press

ISBN: 1934891088

Category: Computer graphics

Page: 720

View: 9244

(Note: a new file with improved images was uploaded 02/19/15) Effective LabVIEW Programming by Thomas Bress is suitable for all beginning and intermediate LabVIEW programmers. It follows a “teach by showing, learn by doing” approach. It demonstrates what good LabVIEW programs look like by exploring a small set of core LabVIEW functions and common design patterns based on a project drawn from the Certified LabVIEW Developer exam. These patterns build on each other. They provide a firm starting point for most beginning and intermediate projects. Overall, the presentation emphasizes how to use the dataflow paradigm of LabVIEW to create effective programs that are readable, scalable and maintainable. The concepts presented in this book are reinforced by eleven problem sets with full solutions. This book will improve your fluency in LabVIEW and, in the process, will teach you how to “think” in LabVIEW. Visit http://www.ntspress.com/publications/effective-labview-programming/ for additional online resources.

LabVIEW

A Developer's Guide to Real World Integration

Author: Ian Fairweather,Anne Brumfield

Publisher: CRC Press

ISBN: 1439839824

Category: Computers

Page: 277

View: 4795

LabVIEWTM has become one of the preeminent platforms for the development of data acquisition and data analysis programs. LabVIEWTM: A Developer’s Guide to Real World Integration explains how to integrate LabVIEW into real-life applications. Written by experienced LabVIEW developers and engineers, the book describes how LabVIEW has been pivotal in solving real-world challenges. Each chapter is self-contained and demonstrates the power and simplicity of LabVIEW in various applications, from image processing to solar tracking systems. Many of the chapters explore how exciting new technologies can be implemented in LabVIEW to enable novel solutions to new or existing problems. The text also presents novel tricks and tips for integrating LabVIEW with third-party hardware and software. Ideal for LabVIEW users who develop stand-alone applications, this down-to-earth guide shows how LabVIEW provides solutions to a variety of application problems. It includes projects and virtual instrumentation for most of the programs and utilities described. Many of the authors’ own software contributions are available on the accompanying CD-ROM.

The LabVIEW Style Book

Author: Peter A. Blume

Publisher: Pearson Education

ISBN: 9780132797276

Category: Technology & Engineering

Page: 400

View: 1536

This is the eBook version of the print title. The illustrations are in color for this eBook version. Drawing on the experiences of a world-class LabVIEW development organization, The LabVIEW Style Book is the definitive guide to best practices in LabVIEW development. Leading LabVIEW development manager Peter A. Blume presents practical guidelines or “rules” for optimizing every facet of your applications: ease of use, efficiency, readability, simplicity, performance, maintainability, and robustness. Blume explains each style rule thoroughly, presenting realistic examples and illustrations. He even presents “nonconforming” examples that show what not to do—and why not. While the illustrations in the print book are in black and white, you can download full-color versions from the publisher web site for free.