An Introduction to Differentiable Manifolds and Riemannian Geometry

Author: William Munger Boothby

Publisher: Gulf Professional Publishing

ISBN: 9780121160517

Category: Mathematics

Page: 419

View: 4581

The second edition of this text has sold over 6,000 copies since publication in 1986 and this revision will make it even more useful. This is the only book available that is approachable by "beginners" in this subject. It has become an essential introduction to the subject for mathematics students, engineers, physicists, and economists who need to learn how to apply these vital methods. It is also the only book that thoroughly reviews certain areas of advanced calculus that are necessary to understand the subject. Line and surface integrals Divergence and curl of vector fields

Introduction to Differentiable Manifolds

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN: 038721772X

Category: Mathematics

Page: 250

View: 4635

Author is well-known and established book author (all Serge Lang books are now published by Springer); Presents a brief introduction to the subject; All manifolds are assumed finite dimensional in order not to frighten some readers; Complete proofs are given; Use of manifolds cuts across disciplines and includes physics, engineering and economics

Introduction to Differentiable Manifolds

Author: Louis Auslander,Robert E. MacKenzie

Publisher: Courier Corporation

ISBN: 048615808X

Category: Mathematics

Page: 224

View: 6004

This text presents basic concepts in the modern approach to differential geometry. Topics include Euclidean spaces, submanifolds, and abstract manifolds; fundamental concepts of Lie theory; fiber bundles; and multilinear algebra. 1963 edition.

An Introduction to Differential Manifolds

Author: Dennis Barden,Charles Benedict Thomas

Publisher: N.A

ISBN: 9781860943553

Category: Mathematics

Page: 218

View: 4745

This invaluable book, based on the many years of teaching experience of both authors, introduces the reader to the basic ideas in differential topology. Among the topics covered are smooth manifolds and maps, the structure of the tangent bundle and its associates, the calculation of real cohomology groups using differential forms (de Rham theory), and applications such as the Poincare-Hopf theorem relating the Euler number of a manifold and the index of a vector field. Each chapter contains exercises of varying difficulty for which solutions are provided. Special features include examples drawn from geometric manifolds in dimension 3 and Brieskom varieties in dimensions 5 and 7, as well as detailed calculations for the cohomology groups of spheres and tori. Readership: Upper level undergraduates, beginning graduate students, and lecturers in geometry and topology.

An Introduction to Differential Manifolds

Author: Jacques Lafontaine

Publisher: Springer

ISBN: 3319207350

Category: Mathematics

Page: 395

View: 6490

This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory. The original French text Introduction aux variétés différentielles has been a best-seller in its category in France for many years. Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs.

Introduction to Differential Topology

Author: T. Bröcker,K. Jänich

Publisher: Cambridge University Press

ISBN: 9780521284707

Category: Mathematics

Page: 160

View: 2877

This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.

Introduction to Smooth Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

ISBN: 0387217525

Category: Mathematics

Page: 631

View: 9728

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

Introduction to Differentiable Manifolds

Author: Louis Auslander,Robert E. MacKenzie

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 218

View: 7217

Algebraic geometry, complex variables, etc. Background in advanced calculus, point-set topology needed.

An Introduction to Riemannian Geometry

With Applications to Mechanics and Relativity

Author: Leonor Godinho,José Natário

Publisher: Springer

ISBN: 3319086669

Category: Mathematics

Page: 467

View: 3143

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 990

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1441974008

Category: Mathematics

Page: 410

View: 7628

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Riemannian Manifolds

An Introduction to Curvature

Author: John M. Lee

Publisher: Springer Science & Business Media

ISBN: 0387227261

Category: Mathematics

Page: 226

View: 6867

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Globale Analysis

Differentialformen in Analysis, Geometrie und Physik

Author: Ilka Agricola,Thomas Friedrich

Publisher: Springer-Verlag

ISBN: 3322929035

Category: Mathematics

Page: 283

View: 6650

Das Anliegen des Buches ist es, die klassische Vektoranalysis unter Verwendung der Differentialformen darzulegen. Anwendungen der allgemeinen Stokeschen Formel in Analysis, Geometrie und Topologie werden besprochen. In weiteren Teilen des Buches werden die Integrierbarkeit Pfaffscher Systeme, die Flächentheorie in Euklidischen Räumen sowie Elemente der Lie-Gruppen, Mechanik, Thermodynamik und Elektrodynamik unter Verwendung der Differentialformen behandelt.

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 9728

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Differentiable Manifolds

A First Course

Author: Lawrence Conlon

Publisher: Springer Science & Business Media

ISBN: 1475722842

Category: Mathematics

Page: 395

View: 7493

This book is based on the full year Ph.D. qualifying course on differentiable manifolds, global calculus, differential geometry, and related topics, given by the author at Washington University several times over a twenty year period. It is addressed primarily to second year graduate students and well prepared first year students. Presupposed is a good grounding in general topology and modern algebra, especially linear algebra and the analogous theory of modules over a commutative, unitary ring. Although billed as a "first course" , the book is not intended to be an overly sketchy introduction. Mastery of this material should prepare the student for advanced topics courses and seminars in differen tial topology and geometry. There are certain basic themes of which the reader should be aware. The first concerns the role of differentiation as a process of linear approximation of non linear problems. The well understood methods of linear algebra are then applied to the resulting linear problem and, where possible, the results are reinterpreted in terms of the original nonlinear problem. The process of solving differential equations (i. e., integration) is the reverse of differentiation. It reassembles an infinite array of linear approximations, result ing from differentiation, into the original nonlinear data. This is the principal tool for the reinterpretation of the linear algebra results referred to above.

Introduction to Smooth Manifolds

Author: John Lee

Publisher: Springer Science & Business Media

ISBN: 1441999825

Category: Mathematics

Page: 708

View: 2486

This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research--- smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer. This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sard’s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures. Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.

An Introduction to Differential Geometry and Topology in Mathematical Physics

Author: Wang Rong,Chen Yue

Publisher: World Scientific

ISBN: 9814495808

Category: Mathematics

Page: 220

View: 1026

This book gives an outline of the developments of differential geometry and topology in the twentieth century, especially those which will be closely related to new discoveries in theoretical physics. Contents:Differential Manifolds:Preliminary Knowledge and DefinitionsProperties and Operations of Tangent Vectors and Cotangent VectorsCurvature Tensors, Torsion Tensors, Covariant Differentials and Adjoint Exterior DifferentialsRiemannian GeometryComplex ManifoldGlobal Topological Properties:Homotopy Equivalence and Homotopy Groups of ManifoldsHomology and de Rham CohomologyFibre Bundles and Their Topological StructuresConnections and Curvatures on Fibre BundlesCharacteristic Classes of Fibre BundlesIndex Theorem and 4-Manifolds:Index Theorems for Manifolds Without BoundaryEssential Features of 4-Manifolds Readership: Mathematicians and physicists. Keywords:Homotopy Theory;Index Theorems;Riemannian Geometry;Complex Manifolds;Homology;De Rham Cohomology;Fibre Bundles;Characteristic Classes

Differential Manifolds

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN: 146840265X

Category: Mathematics

Page: 230

View: 3797

The present volume supersedes my Introduction to Differentiable Manifolds written a few years back. I have expanded the book considerably, including things like the Lie derivative, and especially the basic integration theory of differential forms, with Stokes' theorem and its various special formulations in different contexts. The foreword which I wrote in the earlier book is still quite valid and needs only slight extension here. Between advanced calculus and the three great differential theories (differential topology, differential geometry, ordinary differential equations), there lies a no-man's-land for which there exists no systematic exposition in the literature. It is the purpose of this book to fill the gap. The three differential theories are by no means independent of each other, but proceed according to their own flavor. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.). One may also use differentiable structures on topological manifolds to determine the topological structure of the manifold (e.g. it la Smale [26]).

Introduction to Differential Geometry for Engineers

Author: Brian F. Doolin,Clyde F. Martin

Publisher: Courier Corporation

ISBN: 0486281949

Category: Mathematics

Page: 176

View: 8082

This outstanding guide supplies important mathematical tools for diverse engineering applications, offering engineers the basic concepts and terminology of modern global differential geometry. Suitable for independent study as well as a supplementary text for advanced undergraduate and graduate courses, this volume also constitutes a valuable reference for control, systems, aeronautical, electrical, and mechanical engineers.The treatment's ideas are applied mainly as an introduction to the Lie theory of differential equations and to examine the role of Grassmannians in control systems analysis. Additional topics include the fundamental notions of manifolds, tangent spaces, vector fields, exterior algebra, and Lie algebras. An appendix reviews concepts related to vector calculus, including open and closed sets, compactness, continuity, and derivative.