Introduction to Coalgebra

Towards Mathematics of States and Observation

Author: Bart Jacobs

Publisher: Cambridge University Press

ISBN: 1316833976

Category: Mathematics

Page: N.A

View: 7156

The area of coalgebra has emerged within theoretical computer science with a unifying claim: to be the mathematics of computational dynamics. It combines ideas from the theory of dynamical systems and from the theory of state-based computation. Although still in its infancy, it is an active area of research that generates wide interest. Written by one of the founders of the field, this book acts as the first mature and accessible introduction to coalgebra. It provides clear mathematical explanations, with many examples and exercises involving deterministic and non-deterministic automata, transition systems, streams, Markov chains and weighted automata. The theory is expressed in the language of category theory, which provides the right abstraction to make the similarity and duality between algebra and coalgebra explicit, and which the reader is introduced to in a hands-on manner. The book will be useful to mathematicians and (theoretical) computer scientists and will also be of interest to mathematical physicists, biologists and economists.

Logical Foundations of Computer Science

International Symposium, LFCS 2018, Deerfield Beach, FL, USA, January 8–11, 2018, Proceedings

Author: Sergei Artemov,Anil Nerode

Publisher: Springer

ISBN: 3319720562

Category: Mathematics

Page: 369

View: 8731

This book constitutes the refereed proceedings of the International Symposium on Logical Foundations of Computer Science, LFCS 2018, held in Deerfield Beach, FL, USA, in January 2018. The 22 revised full papers were carefully reviewed and selected from 22 submissions. The scope of the Symposium is broad and includes constructive mathematics and type theory; homotopy type theory; logic, automata, and automatic structures; computability and randomness; logical foundations of programming; logical aspects of computational complexity; parameterized complexity; logic programming and constraints; automated deduction and interactive theorem proving; logical methods in protocol and program verification; logical methods in program specification and extraction; domain theory logics; logical foundations of database theory; equational logic and term rewriting; lambda andcombinatory calculi; categorical logic and topological semantics; linear logic; epistemic and temporal logics; intelligent and multiple-agent system logics; logics of proof and justification; non-monotonic reasoning; logic in game theory and social software; logic of hybrid systems; distributed system logics; mathematical fuzzy logic; system design logics; and other logics in computer science.

Categorical Logic and Type Theory

Author: Bart Jacobs

Publisher: Gulf Professional Publishing

ISBN: 9780444508539

Category: Mathematics

Page: 760

View: 1227

This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

Universal Algebra and Coalgebra

Author: Klaus Denecke,Shelly L. Wismath

Publisher: World Scientific

ISBN: 9812837450

Category: Mathematics

Page: 278

View: 9926

The purpose of this book is to study the structures needed to model objects in universal algebra, universal coalgebra and theoretical computer science. Universal algebra is used to describe different kinds of algebraic structures, while coalgebras are used to model state-based machines in computer science.The connection between algebras and coalgebras provides a way to connect static data-oriented systems with dynamical behavior-oriented systems. Algebras are used to describe data types and coalgebras describe abstract systems or machines.The book presents a clear overview of the area, from which further study may proceed.

Foundations of Algebraic Specification and Formal Software Development

Author: Donald Sannella,Andrzej Tarlecki

Publisher: Springer Science & Business Media

ISBN: 3642173365

Category: Computers

Page: 584

View: 1345

This book provides foundations for software specification and formal software development from the perspective of work on algebraic specification, concentrating on developing basic concepts and studying their fundamental properties. These foundations are built on a solid mathematical basis, using elements of universal algebra, category theory and logic, and this mathematical toolbox provides a convenient language for precisely formulating the concepts involved in software specification and development. Once formally defined, these notions become subject to mathematical investigation, and this interplay between mathematics and software engineering yields results that are mathematically interesting, conceptually revealing, and practically useful. The theory presented by the authors has its origins in work on algebraic specifications that started in the early 1970s, and their treatment is comprehensive. This book contains five kinds of material: the requisite mathematical foundations; traditional algebraic specifications; elements of the theory of institutions; formal specification and development; and proof methods. While the book is self-contained, mathematical maturity and familiarity with the problems of software engineering is required; and in the examples that directly relate to programming, the authors assume acquaintance with the concepts of functional programming. The book will be of value to researchers and advanced graduate students in the areas of programming and theoretical computer science.

Abstract and Concrete Categories

The Joy of Cats

Author: Jiri Adamek,Jiří Adámek (ing.),Horst Herrlich,George E. Strecker

Publisher: N.A

ISBN: 9780486469348

Category: Mathematics

Page: 517

View: 5031

This up-to-date introductory treatment employs the language of category theory to explore the theory of structures. Its unique approach stresses concrete categories, and each categorical notion features several examples that clearly illustrate specific and general cases. A systematic view of factorization structures, this volume contains seven chapters. The first five focus on basic theory, and the final two explore more recent research results in the realm of concrete categories, cartesian closed categories, and quasitopoi. Suitable for advanced undergraduate and graduate students, it requires an elementary knowledge of set theory and can be used as a reference as well as a text. Updated by the authors in 2004, it offers a unifying perspective on earlier work and summarizes recent developments.

Algebra, Meaning, and Computation

Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday

Author: Kokichi Futatsugi,Jean-Pierre Jouannaud,José Meseguer

Publisher: Springer Science & Business Media

ISBN: 354035462X

Category: Computers

Page: 642

View: 6314

Joseph Goguen is one of the most prominent computer scientists worldwide. His numerous research contributions span many topics and have changed the way we think about many concepts. Our views about data types, programming languages, software specification and verification, computational behavior, logics in computer science, semiotics, interface design, multimedia, and consciousness, to mention just some of the areas, have all been enriched in fundamental ways by his ideas. This Festschrift volume - published to honor Joseph Goguen on his 65th Birthday on June 28, 2006 - includes 32 refereed papers by leading researchers in the different areas spanned by Joseph Goguen's work. The papers address a broad variety of topics from meaning, meta-logic, specification and composition, behavior and formal languages, as well as models, deduction, and computation. The papers were presented at a Symposium in San Diego, California, USA in June 2006. Both the Festschrift volume and the Symposium allow the articulation of a retrospective and prospective view of a range of related research topics by key members of the research community in computer science and other fields connected with Joseph Goguen's work.

Lectures on Linear Logic

Author: Anne Sjerp Troelstra

Publisher: Center for the Study of Language and Information Publications

ISBN: 9780937073773

Category: Mathematics

Page: 215

View: 1425

The initial sections of this text deal with syntactical matters such as logical formalism, cut-elimination, and the embedding of intuitionistic logic in classical linear logic. Concluding chapters focus on proofnets for the multiplicative fragment and the algorithmic interpretation of cut-elimination in proofnets.

Foundations of Software Science and Computation Structures

21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14–20, 2018. Proceedings

Author: Christel Baier,Ugo Dal Lago

Publisher: Springer

ISBN: 3319893661

Category: Computers

Page: 583

View: 7050

This book is Open Access under a CC BY licence. This book constitutes the proceedings of the 21st International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2018, which took place in Thessaloniki, Greece, in April 2018, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2018.The 31 papers presented in this volume were carefully reviewed and selected from 103 submissions. The papers are organized in topical sections named: semantics; linearity; concurrency; lambda-calculi and types; category theory and quantum control; quantitative models; logics and equational theories; and graphs and automata.

Category Theory in Context

Author: Emily Riehl

Publisher: Courier Dover Publications

ISBN: 0486820807

Category: Mathematics

Page: 272

View: 9867

Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.

Temporal Logics in Computer Science

Author: Stéphane Demri,Valentin Goranko,Martin Lange

Publisher: Cambridge University Press

ISBN: 1107028361

Category: Computers

Page: 780

View: 4649

A comprehensive, modern and technically precise exposition of the theory and main applications of temporal logics in computer science.

Periods and Nori Motives

Author: Annette Huber,Stefan Müller-Stach

Publisher: Springer

ISBN: 3319509268

Category: Mathematics

Page: 372

View: 8544

This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.

Towards a Philosophy of Real Mathematics

Author: David Corfield

Publisher: Cambridge University Press

ISBN: 9781139436397

Category: Philosophy

Page: N.A

View: 5342

In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of approaches to new thinking about the philosophy of mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures are doing real mathematics, to the use of analogy, the prospects for a Bayesian confirmation theory, the notion of a mathematical research programme and the ways in which new concepts are justified. His inspiring book challenges both philosophers and mathematicians to develop the broadest and richest philosophical resources for work in their disciplines and points clearly to the ways in which this can be done.

Motives, Quantum Field Theory, and Pseudodifferential Operators

Conference on Motives, Quantum Field Theory, and Pseudodifferential Operators, June 2-13, 2008, Boston University, Boston, Massachusetts

Author: Alan L. Carey

Publisher: American Mathematical Soc.

ISBN: 0821851993

Category: Mathematics

Page: 349

View: 1295

This volume contains articles related to the conference ``Motives, Quantum Field Theory, and Pseudodifferntial Operators'' held at Boston University in June 2008, with partial support from the Clay Mathematics Institute, Boston University, and the National Science Foundation. There are deep but only partially understood connections between the three conference fields, so this book is intended both to explain the known connections and to offer directions for further research. In keeping with the organization of the conference, this book contains introductory lectures on each of the conference themes and research articles on current topics in these fields. The introductory lectures are suitable for graduate students and new Ph.D.'s in both mathematics and theoretical physics, as well as for senior researchers, since few mathematicians are expert in any two of the conference areas. Among the topics discussed in the introductory lectures are the appearance of multiple zeta values both as periods of motives and in Feynman integral calculations in perturbative QFT, the use of Hopf algebra techniques for renormalization in QFT, and regularized traces of pseudodifferential operators. The motivic interpretation of multiple zeta values points to a fundamental link between motives and QFT, and there are strong parallels between regularized traces and Feynman integral techniques. The research articles cover a range of topics in areas related to the conference themes, including geometric, Hopf algebraic, analytic, motivic and computational aspects of quantum field theory and mirror symmetry. There is no unifying theory of the conference areas at present, so the research articles present the current state of the art pointing towards such a unification.

Special Topics in Mathematics for Computer Scientists

Sets, Categories, Topologies and Measures

Author: Ernst-Erich Doberkat

Publisher: Springer

ISBN: 3319227505

Category: Mathematics

Page: 719

View: 3507

This textbook addresses the mathematical description of sets, categories, topologies and measures, as part of the basis for advanced areas in theoretical computer science like semantics, programming languages, probabilistic process algebras, modal and dynamic logics and Markov transition systems. Using motivations, rigorous definitions, proofs and various examples, the author systematically introduces the Axiom of Choice, explains Banach-Mazur games and the Axiom of Determinacy, discusses the basic constructions of sets and the interplay of coalgebras and Kripke models for modal logics with an emphasis on Kleisli categories, monads and probabilistic systems. The text further shows various ways of defining topologies, building on selected topics like uniform spaces, Gödel’s Completeness Theorem and topological systems. Finally, measurability, general integration, Borel sets and measures on Polish spaces, as well as the coalgebraic side of Markov transition kernels along with applications to probabilistic interpretations of modal logics are presented. Special emphasis is given to the integration of (co-)algebraic and measure-theoretic structures, a fairly new and exciting field, which is demonstrated through the interpretation of game logics. Readers familiar with basic mathematical structures like groups, Boolean algebras and elementary calculus including mathematical induction will discover a wealth of useful research tools. Throughout the book, exercises offer additional information, and case studies give examples of how the techniques can be applied in diverse areas of theoretical computer science and logics. References to the relevant mathematical literature enable the reader to find the original works and classical treatises, while the bibliographic notes at the end of each chapter provide further insights and discussions of alternative approaches.

Basic Noncommutative Geometry

Author: Masoud Khalkhali

Publisher: European Mathematical Society

ISBN: 9783037190616

Category: Mathematics

Page: 223

View: 4727

"Basic Noncommutative Geometry provides an introduction to noncommutative geometry and some of its applications. The book can be used either as a textbook for a graduate course on the subject or for self-study. It will be useful for graduate students and researchers in mathematics and theoretical physics and all those who are interested in gaining an understanding of the subject. One feature of this book is the wealth of examples and exercises that help the reader to navigate through the subject. While background material is provided in the text and in several appendices, some familiarity with basic notions of functional analysis, algebraic topology, differential geometry and homological algebra at a first year graduate level is helpful. Developed by Alain Connes since the late 1970s, noncommutative geometry has found many applications to long-standing conjectures in topology and geometry and has recently made headways in theoretical physics and number theory. The book starts with a detailed description of some of the most pertinent algebra-geometry correspondences by casting geometric notions in algebraic terms, then proceeds in the second chapter to the idea of a noncommutative space and how it is constructed. The last two chapters deal with homological tools: cyclic cohomology and Connes-Chern characters in K-theory and K-homology, culminating in one commutative diagram expressing the equality of topological and analytic index in a noncommutative setting. Applications to integrality of noncommutative topological invariants are given as well."--Publisher's description.


From Simple to Complex

Author: Alexander Balanov,Natalia Janson,Dmitry Postnov,Olga Sosnovtseva

Publisher: Springer Science & Business Media

ISBN: 3540721282

Category: Science

Page: 426

View: 7183

This fascinating work is devoted to the fundamental phenomenon in physics – synchronization that occurs in coupled non-linear dissipative oscillators. Examples of such systems range from mechanical clocks to population dynamics, from the human heart to neural networks. The main purpose of this book is to demonstrate that the complexity of synchronous patterns of real oscillating systems can be described in the framework of the general approach, and the authors study this phenomenon as applied to oscillations of different types, such as those with periodic, chaotic, noisy and noise-induced nature.

Stochastic Relations

Foundations for Markov Transition Systems

Author: Ernst-Erich Doberkat

Publisher: CRC Press

ISBN: 9781584889427

Category: Computers

Page: 376

View: 3074

Collecting information previously scattered throughout the vast literature, including the author’s own research, Stochastic Relations: Foundations for Markov Transition Systems develops the theory of stochastic relations as a basis for Markov transition systems. After an introduction to the basic mathematical tools from topology, measure theory, and categories, the book examines the central topics of congruences and morphisms, applies these to the monoidal structure, and defines bisimilarity and behavioral equivalence within this framework. The author views developments from the general theory of coalgebras in the context of the subprobability functor. These tools show that bisimilarity and behavioral and logical equivalence are the same for general modal logics and for continuous time stochastic logic with and without a fixed point operator. With numerous problems and several case studies, this book is an invaluable study of an important aspect of computer science theory.

Nominal Sets

Names and Symmetry in Computer Science

Author: Andrew M. Pitts

Publisher: Cambridge University Press

ISBN: 1107244684

Category: Computers

Page: N.A

View: 5842

Nominal sets provide a promising new mathematical analysis of names in formal languages based upon symmetry, with many applications to the syntax and semantics of programming language constructs that involve binding, or localising names. Part I provides an introduction to the basic theory of nominal sets. In Part II, the author surveys some of the applications that have developed in programming language semantics (both operational and denotational), functional programming and logic programming. As the first book to give a detailed account of the theory of nominal sets, it will be welcomed by researchers and graduate students in theoretical computer science.