*A Creative Approach*

**Author**: Udi Manber

**Publisher:** Addison Wesley

**ISBN:**

**Category:** Computers

**Page:** 478

**View:** 878

This book emphasizes the creative aspects of algorithm design by examining steps used in the process of algorithm development. The heart of the creative process lies in an analogy between proving mathematical theorems by induction and designing combinatorial algorithms. The book contains hundreds of problems and examples. It is designed to enhance the reader's problem-solving abilities and understanding of the principles behind algorithm design. 0201120372B04062001

An extensively revised edition of a mathematically rigorous yet accessible introduction to algorithms.

Data structures and algorithms are presented at the college level in a highly accessible format that presents material with one-page displays in a way that will appeal to both teachers and students. The thirteen chapters cover: Models of Computation, Lists, Induction and Recursion, Trees, Algorithm Design, Hashing, Heaps, Balanced Trees, Sets Over a Small Universe, Graphs, Strings, Discrete Fourier Transform, Parallel Computation. Key features: Complicated concepts are expressed clearly in a single page with minimal notation and without the "clutter" of the syntax of a particular programming language; algorithms are presented with self-explanatory "pseudo-code." * Chapters 1-4 focus on elementary concepts, the exposition unfolding at a slower pace. Sample exercises with solutions are provided. Sections that may be skipped for an introductory course are starred. Requires only some basic mathematics background and some computer programming experience. * Chapters 5-13 progress at a faster pace. The material is suitable for undergraduates or first-year graduates who need only review Chapters 1 -4. * This book may be used for a one-semester introductory course (based on Chapters 1-4 and portions of the chapters on algorithm design, hashing, and graph algorithms) and for a one-semester advanced course that starts at Chapter 5. A year-long course may be based on the entire book. * Sorting, often perceived as rather technical, is not treated as a separate chapter, but is used in many examples (including bubble sort, merge sort, tree sort, heap sort, quick sort, and several parallel algorithms). Also, lower bounds on sorting by comparisons are included with the presentation of heaps in the context of lower bounds for comparison-based structures. * Chapter 13 on parallel models of computation is something of a mini-book itself, and a good way to end a course. Although it is not clear what parallel

Many programmers would love to use Perl for projects that involve heavy lifting, but miss the many traditional algorithms that textbooks teach for other languages. Computer scientists have identified many techniques that a wide range of programs need, such as: Fuzzy pattern matching for text (identify misspellings!) Finding correlations in data Game-playing algorithms Predicting phenomena such as Web traffic Polynomial and spline fitting Using algorithms explained in this book, you too can carry out traditional programming tasks in a high-powered, efficient, easy-to-maintain manner with Perl.This book assumes a basic understanding of Perl syntax and functions, but not necessarily any background in computer science. The authors explain in a readable fashion the reasons for using various classic programming techniques, the kind of applications that use them, and -- most important -- how to code these algorithms in Perl.If you are an amateur programmer, this book will fill you in on the essential algorithms you need to solve problems like an expert. If you have already learned algorithms in other languages, you will be surprised at how much different (and often easier) it is to implement them in Perl. And yes, the book even has the obligatory fractal display program.There have been dozens of books on programming algorithms, some of them excellent, but never before has there been one that uses Perl.The authors include the editor of The Perl Journal and master librarian of CPAN; all are contributors to CPAN and have archived much of the code in this book there."This book was so exciting I lost sleep reading it." Tom Christiansen

While many think of algorithms as specific to computer science, at its core algorithmic thinking is defined by the use of analytical logic to solve problems. This logic extends far beyond the realm of computer science and into the wide and entertaining world of puzzles. In Algorithmic Puzzles, Anany and Maria Levitin use many classic brainteasers as well as newer examples from job interviews with major corporations to show readers how to apply analytical thinking to solve puzzles requiring well-defined procedures. The book's unique collection of puzzles is supplemented with carefully developed tutorials on algorithm design strategies and analysis techniques intended to walk the reader step-by-step through the various approaches to algorithmic problem solving. Mastery of these strategies--exhaustive search, backtracking, and divide-and-conquer, among others--will aid the reader in solving not only the puzzles contained in this book, but also others encountered in interviews, puzzle collections, and throughout everyday life. Each of the 150 puzzles contains hints and solutions, along with commentary on the puzzle's origins and solution methods. The only book of its kind, Algorithmic Puzzles houses puzzles for all skill levels. Readers with only middle school mathematics will develop their algorithmic problem-solving skills through puzzles at the elementary level, while seasoned puzzle solvers will enjoy the challenge of thinking through more difficult puzzles.

Programming is, above all, problem solving. This book will help students thoroughly understand real-world programming problems - and solve those problems quickly and efficiently, using Java's sophisticated design and coding facilities.

Accessible text covers deformation and stress, derivation of equations of finite elasticity, and formulation of infinitesimal elasticity with application to two- and three-dimensional static problems and elastic waves. 1980 edition.

*13th European Symposium on Programming, ESOP 2004, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings*

**Author**: David Schmidt

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Computers

**Page:** 415

**View:** 460

This helpful "bridge" book offers students the foundations they need to understand advanced mathematics. The two-part treatment provides basic tools and covers sets, relations, functions, mathematical proofs and reasoning, more. 1975 edition.

Today, anyone in a scientific or technical discipline needs programming skills. Python is an ideal first programming language, and Introduction to Programming in Python is the best guide to learning it. Princeton University’s Robert Sedgewick, Kevin Wayne, and Robert Dondero have crafted an accessible, interdisciplinary introduction to programming in Python that emphasizes important and engaging applications, not toy problems. The authors supply the tools needed for students to learn that programming is a natural, satisfying, and creative experience. This example-driven guide focuses on Python’s most useful features and brings programming to life for every student in the sciences, engineering, and computer science. Coverage includes Basic elements of programming: variables, assignment statements, built-in data types, conditionals, loops, arrays, and I/O, including graphics and sound Functions, modules, and libraries: organizing programs into components that can be independently debugged, maintained, and reused Object-oriented programming and data abstraction: objects, modularity, encapsulation, and more Algorithms and data structures: sort/search algorithms, stacks, queues, and symbol tables Examples from applied math, physics, chemistry, biology, and computer science—all compatible with Python 2 and 3 Drawing on their extensive classroom experience, the authors provide Q&As, exercises, and opportunities for creative practice throughout. An extensive amount of supplementary information is available at introcs.cs.princeton.edu/python. With source code, I/O libraries, solutions to selected exercises, and much more, this companion website empowers people to use their own computers to teach and learn the material.