**Author**: Monica Cojocaru,Ilias S. Kotsireas,Roman Makarov,Roderick Melnik,Hasan Shodiev

**Publisher:** Springer

**ISBN:** 3319123076

**Category:** Computers

**Page:** 555

**View:** 4737

The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26—30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics and its areas of applications.

The volume presents a selection of in-depth studies and state-of-the-art surveys of several challenging topics that are at the forefront of modern applied mathematics, mathematical modeling, and computational science. These three areas represent the foundation upon which the methodology of mathematical modeling and computational experiment is built as a ubiquitous tool in all areas of mathematical applications. This book covers both fundamental and applied research, ranging from studies of elliptic curves over finite fields with their applications to cryptography, to dynamic blocking problems, to random matrix theory with its innovative applications. The book provides the reader with state-of-the-art achievements in the development and application of new theories at the interface of applied mathematics, modeling, and computational science. This book aims at fostering interdisciplinary collaborations required to meet the modern challenges of applied mathematics, modeling, and computational science. At the same time, the contributions combine rigorous mathematical and computational procedures and examples from applications ranging from engineering to life sciences, providing a rich ground for graduate student projects.

This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science. The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.

This book brings together carefully selected, peer-reviewed works on mathematical biology presented at the BIOMAT International Symposium on Mathematical and Computational Biology, which was held at the Institute of Numerical Mathematics, Russian Academy of Sciences, in October 2017, in Moscow. Topics covered include, but are not limited to, the evolution of spatial patterns on metapopulations, problems related to cardiovascular diseases and modeled by boundary control techniques in hemodynamics, algebraic modeling of the genetic code, and multi-step biochemical pathways. Also, new results are presented on topics like pattern recognition of probability distribution of amino acids, somitogenesis through reaction-diffusion models, mathematical modeling of infectious diseases, and many others. Experts, scientific practitioners, graduate students and professionals working in various interdisciplinary fields will find this book a rich resource for research and applications alike.

Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text

This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.

This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.

Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by describing selected developments in the following fields: bioinformatics, biomedicine and neuroscience. This work is unique in two respects - first, by the variety and scales of systems studied and second, by its presentation: Each chapter provides the biological or medical context, follows up with mathematical or algorithmic developments triggered by a specific problem and concludes with one or two success stories, namely new insights gained thanks to these methodological developments. It also highlights some unsolved and outstanding theoretical questions, with a potentially high impact on these disciplines. Two communities will be particularly interested in this book. The first one is the vast community of applied mathematicians and computer scientists, whose interests should be captured by the added value generated by the application of advanced concepts and algorithms to challenging biological or medical problems. The second is the equally vast community of biologists. Whether scientists or engineers, they will find in this book a clear and self-contained account of concepts and techniques from mathematics and computer science, together with success stories on their favorite systems. The variety of systems described represents a panoply of complementary conceptual tools. On a practical level, the resources listed at the end of each chapter (databases, software) offer invaluable support for getting started on a specific topic in the fields of biomedicine, bioinformatics and neuroscience.

Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-the-art achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, industrial, and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.

Mathematics has always benefited from its involvement with developing sciences. Each successive interaction revitalises and enhances the field. Biomedical science is clearly the premier science of the foreseeable future. For the continuing health of their subject mathematicians must become involved with biology. With the example of how mathematics has benefited from and influenced physics, it is clear that if mathematicians do not become involved in the biosciences they will simply not be a part of what are likely to be the most important and exciting scientific discoveries of all time. Mathematical biology is a fast growing, well recognised, albeit not clearly defined, subject and is, to my mind, the most exciting modern application of mathematics. The increasing use of mathematics in biology is inevitable as biol ogy becomes more quantitative. The complexity of the biological sciences makes interdisciplinary involvement essential. For the mathematician, biology opens up new and exciting branches while for the biologist mathematical modelling offers another research tool commmensurate with a new powerful laboratory technique but only if used appropriately and its limitations recognised. However, the use of esoteric mathematics arrogantly applied to biological problems by mathemati cians who know little about the real biology, together with unsubstantiated claims as to how important such theories are, does little to promote the interdisciplinary involvement which is so essential. Mathematical biology research, to be useful and interesting, must be relevant biologically.

Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science and engineering. It provides a primary and ubiquitous tool in the context making new discoveries, as well as in the development of new theories and techniques for solving key problems arising in scientific and engineering applications. The contributions, which are the product of two highly successful meetings held jointly in Waterloo, Ontario, Canada on the main campus of Wilfrid Laurier University in June 2015, i.e. the International Conference on Applied Mathematics, Modeling and Computational Science, and the Annual Meeting of the Canadian Applied and Industrial Mathematics (CAIMS), make the book a valuable resource for any reader interested in a broader overview of the methods, ideas and tools involved in mathematical and computational approaches developed for other disciplines, including the natural and social sciences, engineering and technology.

The practice of modeling is best learned by those armed with fundamental methodologies and exposed to a wide variety of modeling experience. Ideally, this experience could be obtained by working on actual modeling problems. But time constraints often make this difficult. Applied Mathematical Modeling provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in practice. These chapters discuss the general components of the modeling process, and the evolutionary nature of successful model building. The second part provides a rich compendium of case studies, each one complete with examples, exercises, and projects. In keeping with the multidimensional nature of the models presented, the chapters in the second part are listed in alphabetical order by the contributor's last name. Unlike most mathematical books, in which you must master the concepts of early chapters to prepare for subsequent material, you may start with any chapter. Begin with cryptology, if that catches your fancy, or go directly to bursty traffic if that is your cup of tea. Applied Mathematical Modeling serves as a handbook of in-depth case studies that span the mathematical sciences, building upon a modest mathematical background. Readers in other applied disciplines will benefit from seeing how selected mathematical modeling philosophies and techniques can be brought to bear on problems in their disciplines. The models address actual situations studied in chemistry, physics, demography, economics, civil engineering, environmental engineering, industrial engineering, telecommunications, and other areas.

This book first covers exact and approximate analytical techniques (ordinary differential and difference equations, partial differential equations, variational principles, stochastic processes); numerical methods (finite differences for ODE's and PDE's, finite elements, cellular automata); model inference based on observations (function fitting, data transforms, network architectures, search techniques, density estimation); as well as the special role of time in modeling (filtering and state estimation, hidden Markov processes, linear and nonlinear time series). Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area, providing an orientation to what they can (and cannot) do, enough background to use them to solve typical problems, and pointers to access the literature for particular applications.

This book lists general information about a Monte Carlo simulation methodology in radio. In addition to providing general information, the text also constitutes a specification of the first generation of software SEAMCAT (spectrum engineering advanced Monte Carlo analysis tool) that uses the Monte Carlo method applied to radio cases.The problem of unwanted emissions, an important factor affecting the efficiency of radio spectrum use is the subject of an in-depth treatment in various forums both internal and external to the European Conference of Postal and Telecommunications Administrations (CEPT). While the need to re-evaluate the limits of unwanted emissions within Section 3 of the Radio Regulations (RR) is supported, it is generally considered to be preferable to use for this purpose a generic method.One of the many reasons why generic methods are preferred is their ability, a priori, to deal with new systems and communication technologies as they arise. Another reason is that only a generic method can aspire to become the basis of an analytical tool widely recognized.The tool for radio Monte Carlo simulation described in this report was developed based on the above considerations, in the process of the European Radiocommunications Committee (ERC).SEAMCAT is the application of a Monte Carlo simulation model for radio, developed by a group of CEPT administrations, members of the European Telecommunications Standards Institute (ETSI) and international scientific bodies. SEAMCAT is a computer program whose object code is public, being distributed by the European Radiocommunications Office (ERO) of the CEPT.Computing and information technology area courses have as objectives the training of human resources for the technological development of computing (hardware and software) in order to meet society''s needs for the application of computer technology in the interests of society and the formation teachers for middle and vocational education. Between the needs of society can be met with the aid of computers can be mentioned: storage of large volumes of information of all kinds and shapes and their recovery in an acceptable time; computing complex mathematical calculations in extremely short time; secure communication, fast and reliable; automation, control and monitoring of complex systems; fast computing repetitive calculations involving large amounts of information; processing images from different sources; games and tools to support teaching, etc. Application examples are found in the daily routine of companies (computing involving economic, financial and administrative information generated by business activities, industrial and services); in processing images generated by satellites for weather forecasts; in related to health activities (hospitals, doctors'' offices and public health agencies); in air traffic control systems; communication via the Internet; in the banking system, etc. The computation is for man an indispensable and fundamental tool in modern life. In the context of higher education in the field of Information Technology and its generation processes and automation of knowledge, we must consider the importance of curricula that can effectively prepare critical people, active and increasingly aware of their social roles and its contribution to scientific and technological advancement of the country. The social, humanitarian and ethical content of such training must orient curricula to ensure the expansion of human capabilities in close relation to the technical and scientific learning in the field of Computer and Information Technology. It is therefore a higher education in which individuals are also being trained to deal with human and ethical dimensions of knowledge and social relations.Applications of computing and computer area courses can be composed of four major areas of training: * Basic training, which comprises the basic principles of the area of computing, computer science, mathematics necessary to define them formally, physics and electricity needed to enable the understanding and design of viable computers technical and pedagogical training that introduces the basic knowledge the construction of knowledge, necessary for the development of the practice of computer education.* technological formation applying the basic technological development in computing * additional training allowing an interaction of the graduates of the courses with other professions

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available

Mathematically rigorous monograph on wavelets, written specifically for nonspecialists. Places the reader at the forefront of current research.

The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.

A description of the theoretical foundations of inelasticity, its numerical formulation and implementation, constituting a representative sample of state-of-the-art methodology currently used in inelastic calculations. Among the numerous topics covered are small deformation plasticity and viscoplasticity, convex optimisation theory, integration algorithms for the constitutive equation of plasticity and viscoplasticity, the variational setting of boundary value problems and discretization by finite element methods. Also addressed are the generalisation of the theory to non-smooth yield surface, mathematical numerical analysis issues of general return mapping algorithms, the generalisation to finite-strain inelasticity theory, objective integration algorithms for rate constitutive equations, the theory of hyperelastic-based plasticity models and small and large deformation viscoelasticity. Of great interest to researchers and graduate students in various branches of engineering, especially civil, aeronautical and mechanical, and applied mathematics.

This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.