Image Analysis, Random Fields and Markov Chain Monte Carlo Methods

A Mathematical Introduction

Author: Gerhard Winkler

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 387

View: 165

"This book is concerned with a probabilistic approach for image analysis, mostly from the Bayesian point of view, and the important Markov chain Monte Carlo methods commonly used....This book will be useful, especially to researchers with a strong background in probability and an interest in image analysis. The author has presented the theory with rigor...he doesn’t neglect applications, providing numerous examples of applications to illustrate the theory." -- MATHEMATICAL REVIEWS

Image Processing for Computer Graphics and Vision

Author: Luiz Velho

Publisher: Springer Science & Business Media

ISBN:

Category: Computers

Page: 463

View: 779

Image processing is concerned with the analysis and manipulation of images by computer. Providing a thorough treatment of image processing with an emphasis on those aspects most used in computer graphics, the authors concentrate on describing and analyzing the underlying concepts rather than on presenting algorithms or pseudocode. As befits a modern introduction to this topic, a good balance is struck between discussing the underlying mathematics and the main topics: signal processing, data discretization, the theory of colour and different colour systems, operations in images, dithering and half-toning, warping and morphing and image processing. This second edition reflects recent trends in science andtechnology that exploit image processing in computer graphics and vision applications. Stochastic image models and statistical methods for image processing are covered as are: A modern approach and new developments in the area, Probability theory for image processing, Applications in image analysis and computer vision.

Mathematical Methods for Signal and Image Analysis and Representation

Author: Luc Florack

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 320

View: 705

Mathematical Methods for Signal and Image Analysis and Representation presents the mathematical methodology for generic image analysis tasks. In the context of this book an image may be any m-dimensional empirical signal living on an n-dimensional smooth manifold (typically, but not necessarily, a subset of spacetime). The existing literature on image methodology is rather scattered and often limited to either a deterministic or a statistical point of view. In contrast, this book brings together these seemingly different points of view in order to stress their conceptual relations and formal analogies. Furthermore, it does not focus on specific applications, although some are detailed for the sake of illustration, but on the methodological frameworks on which such applications are built, making it an ideal companion for those seeking a rigorous methodological basis for specific algorithms as well as for those interested in the fundamental methodology per se. Covering many topics at the forefront of current research, including anisotropic diffusion filtering of tensor fields, this book will be of particular interest to graduate and postgraduate students and researchers in the fields of computer vision, medical imaging and visual perception.

Image Analysis, Random Fields and Dynamic Monte Carlo Methods

A Mathematical Introduction

Author: Gerhard Winkler

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 324

View: 325

This text is concerned with a probabilistic approach to image analysis as initiated by U. GRENANDER, D. and S. GEMAN, B.R. HUNT and many others, and developed and popularized by D. and S. GEMAN in a paper from 1984. It formally adopts the Bayesian paradigm and therefore is referred to as 'Bayesian Image Analysis'. There has been considerable and still growing interest in prior models and, in particular, in discrete Markov random field methods. Whereas image analysis is replete with ad hoc techniques, Bayesian image analysis provides a general framework encompassing various problems from imaging. Among those are such 'classical' applications like restoration, edge detection, texture discrimination, motion analysis and tomographic reconstruction. The subject is rapidly developing and in the near future is likely to deal with high-level applications like object recognition. Fascinating experiments by Y. CHOW, U. GRENANDER and D.M. KEENAN (1987), (1990) strongly support this belief.

Markov Chain Monte Carlo in Practice

Author: W.R. Gilks

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 512

View: 596

In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France, researchers map a rare disease with relatively little variation. Each of these studies applied Markov chain Monte Carlo methods to produce more accurate and inclusive results. General state-space Markov chain theory has seen several developments that have made it both more accessible and more powerful to the general statistician. Markov Chain Monte Carlo in Practice introduces MCMC methods and their applications, providing some theoretical background as well. The authors are researchers who have made key contributions in the recent development of MCMC methodology and its application. Considering the broad audience, the editors emphasize practice rather than theory, keeping the technical content to a minimum. The examples range from the simplest application, Gibbs sampling, to more complex applications. The first chapter contains enough information to allow the reader to start applying MCMC in a basic way. The following chapters cover main issues, important concepts and results, techniques for implementing MCMC, improving its performance, assessing model adequacy, choosing between models, and applications and their domains. Markov Chain Monte Carlo in Practice is a thorough, clear introduction to the methodology and applications of this simple idea with enormous potential. It shows the importance of MCMC in real applications, such as archaeology, astronomy, biostatistics, genetics, epidemiology, and image analysis, and provides an excellent base for MCMC to be applied to other fields as well.

Markov Chains

Gibbs Fields, Monte Carlo Simulation, and Queues

Author: Pierre Bremaud

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 445

View: 117

Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.

Stochastic Simulation and Monte Carlo Methods

Mathematical Foundations of Stochastic Simulation

Author: Carl Graham

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 260

View: 881

In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.

Simulation and the Monte Carlo Method

Author: Reuven Y. Rubinstein

Publisher: John Wiley & Sons

ISBN:

Category: Mathematics

Page: 372

View: 386

This accessible new edition explores the major topics in MonteCarlo simulation Simulation and the Monte Carlo Method, Second Editionreflects the latest developments in the field and presents a fullyupdated and comprehensive account of the major topics that haveemerged in Monte Carlo simulation since the publication of theclassic First Edition over twenty-five years ago. Whilemaintaining its accessible and intuitive approach, this revisededition features a wealth of up-to-date information thatfacilitates a deeper understanding of problem solving across a widearray of subject areas, such as engineering, statistics, computerscience, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addressesthe basic concepts of probability, Markov processes, and convexoptimization. Subsequent chapters discuss the dramatic changes thathave occurred in the field of the Monte Carlo method, with coverageof many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihoodratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochasticcounter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation andcombinatorial optimization Application of Monte Carlo techniques for counting problems,with an emphasis on the parametric minimum cross-entropymethod An extensive range of exercises is provided at the end of eachchapter, with more difficult sections and exercises markedaccordingly for advanced readers. A generous sampling of appliedexamples is positioned throughout the book, emphasizing variousareas of application, and a detailed appendix presents anintroduction to exponential families, a discussion of thecomputational complexity of stochastic programming problems, andsample MATLAB programs. Requiring only a basic, introductory knowledge of probabilityand statistics, Simulation and the Monte Carlo Method,Second Edition is an excellent text for upper-undergraduate andbeginning graduate courses in simulation and Monte Carlotechniques. The book also serves as a valuable reference forprofessionals who would like to achieve a more formal understandingof the Monte Carlo method.

Simulation

Author: Sheldon M. Ross

Publisher: Academic Press

ISBN:

Category: Mathematics

Page: 328

View: 507

The 5th edition of Ross’s Simulation continues to introduce aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This latest edition features all-new material on variance reduction, including control variables and their use in estimating the expected return at blackjack and their relation to regression analysis. Additionally, the 5th edition expands on Markov chain monte carlo methods, and offers unique information on the alias method for generating discrete random variables. By explaining how a computer can be used to generate random numbers and how to use these random numbers to generate the behavior of a stochastic model over time, Ross’s Simulation, 5th edition presents the statistics needed to analyze simulated data as well as that needed for validating the simulation model. Additional material on variance reduction, including control variables and their use in estimating the expected return at blackjack and their relation to regression analysis Additional material and examples on Markov chain Monte Carlo methods Unique material on the alias method for generating discrete random variables Additional material on generating multivariate normal vectors

Stochastic Processes: Modeling and Simulation

Author: D N Shanbhag

Publisher: Gulf Professional Publishing

ISBN:

Category: Mathematics

Page: 1000

View: 423

This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.