Handbook of Mathematical Functions

With Formulas, Graphs, and Mathematical Tables

Author: Milton Abramowitz

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 1046

View: 722

An extensive summary of mathematical functions that occur in physical and engineering problems

Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables

Author: Milton Abramowitz

Publisher:

ISBN:

Category: Mathematics

Page: 1064

View: 454

2014 Reprint of 1964 Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. Despite the increasing use of computers, the basic need for mathematical tables continues. Tables serve a vital role in preliminary surveys of problems before programming for machine operation, and they are indispensable to thousands of engineers and scientists without access to machines. Because of automatic computers, however, and because of recent scientific advances, a greater variety of functions and a higher accuracy of tabulation than have been available until now are required. In 1954, a conference on mathematical tables, sponsored by M.I.T. and the National Science Foundation, met to discuss a modernization and extension of Jahnke and Emde's classical tables of functions. This volume, published 10 years later by the U.S. Department of Commerce, is the result. Designed to include a maximum of information and to meet the needs of scientists in all fields, it is a monumental piece of work, a comprehensive and self-contained summary of the mathematical functions that arise in physical and engineering problems. The book contains 29 sets of tables, some to as high as 20 places: mathematical constants; physical constants and conversion factors (6 tables); exponential integral and related functions (7); error function and Fresnel integrals (12); Bessel functions of integer (12) and fractional (13) order; integrals of Bessel functions (2); Struve and related functions (2); confluent hypergeometric functions (2); Coulomb wave functions (2); hypergeometric functions; Jacobian elliptic and theta functions (2); elliptic integrals {9); Weierstrass elliptic and related functions; parabolic cylinder functions {3); Mathieu functions (2); spheroidal wave functions (5); orthogonal polynomials (13); combinatorial analysis (9); numerical interpolation, differentiation and integration (11); probability functions (ll); scales of notation {6); miscellaneous functions {9); Laplace transforms (2); and others. Each of these sections is prefaced by a list of related formulas and graphs: differential equations, series expansions, special functions, and other basic relations. These constitute an unusually valuable reference work in themselves. The prefatory material also includes an explanation of the numerical methods involved in using the tables that follow and a bibliography. Numerical examples illustrate the use of each table and explain the computation of function values which lie outside its range, while the editors' introduction describes higher-order interpolation procedures. Well over 100 figures illustrate the text. In all, this is one of the most ambitious and useful books of its type ever published, an essential aid in all scientific and engineering research, problem solving, experimentation and field work. This low-cost edition contains every page of the original government publication. Preface by A. V. Astin. Foreword by Advisory Committee, Conference on Mathematical Tables. Editors' Introduction. Indices to Subjects, Notations.

NIST Handbook of Mathematical Functions

Author: Frank W. J. Olver

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 951

View: 988

The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.

Mathematical Functions and Their Approximations

Author: Yudell L. Luke

Publisher: Academic Press

ISBN:

Category: Mathematics

Page: 586

View: 213

Mathematical Functions and their Approximations is an updated version of the Applied Mathematics Series 55 Handbook based on the 1954 Conference on Mathematical Tables, held at Cambridge, Massachusetts. The aim of the conference is to determine the need for mathematical tables in view of the availability of high speed computing machinery. This work is composed of 14 chapters that cover the machinery for the expansion of the generalized hypergeometric function and other functions in infinite series of Jacobi and Chebyshev polynomials of the first kind. Numerical coefficients for Chebyshev expansions of the more common functions are tabulated. Other chapters contain polynomial and rational approximations for certain class of G-functions, the coefficients in the early polynomials of these rational approximations, and the Padé approximations for many of the elementary functions and the incomplete gamma functions. The remaining chapters describe the development of analytic approximations and expansions. This book will prove useful to mathematicians, advance mathematics students, and researchers.

Handbook of Continued Fractions for Special Functions

Author: Annie A.M. Cuyt

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 431

View: 381

Special functions are pervasive in all fields of science and industry. The most well-known application areas are in physics, engineering, chemistry, computer science and statistics. Because of their importance, several books and websites (see for instance http: functions.wolfram.com) and a large collection of papers have been devoted to these functions. Of the standard work on the subject, the Handbook of mathematical functions with formulas, graphs and mathematical tables edited by Milton Abramowitz and Irene Stegun, the American National Institute of Standards claims to have sold over 700 000 copies! But so far no project has been devoted to the systematic study of continued fraction representations for these functions. This handbook is the result of such an endeavour. We emphasise that only 10% of the continued fractions contained in this book, can also be found in the Abramowitz and Stegun project or at the Wolfram website!

Mathematical Methods for Physicists

Author: George B. Arfken

Publisher: Academic Press

ISBN:

Category: Mathematics

Page: 1008

View: 141

Mathematical Methods for Physicists, Third Edition provides an advanced undergraduate and beginning graduate study in physical science, focusing on the mathematics of theoretical physics. This edition includes sections on the non-Cartesian tensors, dispersion theory, first-order differential equations, numerical application of Chebyshev polynomials, the fast Fourier transform, and transfer functions. Many of the physical examples provided in this book, which are used to illustrate the applications of mathematics, are taken from the fields of electromagnetic theory and quantum mechanics. The Hermitian operators, Hilbert space, and concept of completeness are also deliberated. This book is beneficial to students studying graduate level physics, particularly theoretical physics.

Intelligent Computer Mathematics

MKM, Calculemus, DML, and Systems and Projects 2013, Held as Part of CICM 2013, Bath, UK, July 8-12, 2013, Proceedings

Author: Jacques Carette

Publisher: Springer

ISBN:

Category: Computers

Page: 384

View: 450

This book constitutes the joint refereed proceedings of the 20th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning, Calculemus 2013, 6th International Workshop on Digital Mathematics Libraries, DML 2013, Systems and Projects, held in Bath, UK as part of CICM 2013, the Conferences on Intelligent Computer Mathematics. The 7 revised full papers out of 18 submissions for MKM 2013, 5 revised full papers out of 12 submissions for Calculemus 2013, 6 revised full papers out of 8 submissions for DML 2013, and 12 revised full papers out of 16 submissions for Systems and Project track presented together with 3 invited talks were carefully reviewed and selected, resulting in 33 papers from a total of 73 submissions.

Essentials of Math Methods for Physicists

Author: Hans J. Weber

Publisher: Academic Press

ISBN:

Category: Science

Page: 960

View: 293

Essentials of Math Methods for Physicists aims to guide the student in learning the mathematical language used by physicists by leading them through worked examples and then practicing problems. The pedagogy is that of introducing concepts, designing and refining methods and practice them repeatedly in physics examples and problems. Geometric and algebraic approaches and methods are included and are more or less emphasized in a variety of settings to accommodate different learning styles of students. Comprised of 19 chapters, this book begins with an introduction to the basic concepts of vector algebra and vector analysis and their application to classical mechanics and electrodynamics. The next chapter deals with the extension of vector algebra and analysis to curved orthogonal coordinates, again with applications from classical mechanics and electrodynamics. These chapters lay the foundations for differential equations, variational calculus, and nonlinear analysisin later discussions. High school algebra of one or two linear equations is also extended to determinants and matrix solutions of general systems of linear equations, eigenvalues and eigenvectors, and linear transformations in real and complex vector spaces. The book also considers probability and statistics as well as special functions and Fourier series. Historical remarks are included that describe some physicists and mathematicians who introduced the ideas and methods that were perfected by later generations to the tools routinely used today. This monograph is intended to help undergraduate students prepare for the level of mathematics expected in more advanced undergraduate physics and engineering courses.

Green's Functions and Infinite Products

Bridging the Divide

Author: Yuri A. Melnikov

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 165

View: 689

Green's Functions and Infinite Products provides a thorough introduction to the classical subjects of the construction of Green's functions for the two-dimensional Laplace equation and the infinite product representation of elementary functions. Every chapter begins with a review guide, outlining the basic concepts covered. A set of carefully designed challenging exercises is available at the end of each chapter to provide the reader with the opportunity to explore the concepts in more detail. Hints, comments, and answers to most of those exercises can be found at the end of the text. In addition, several illustrative examples are offered at the end of most sections. This text is intended for an elective graduate course or seminar within the scope of either pure or applied mathematics.

Mathematical Aspects of Pattern Formation in Biological Systems

Author: Juncheng Wei

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 319

View: 338

This monograph is concerned with the mathematical analysis of patterns which are encountered in biological systems. It summarises, expands and relates results obtained in the field during the last fifteen years. It also links the results to biological applications and highlights their relevance to phenomena in nature. Of particular concern are large-amplitude patterns far from equilibrium in biologically relevant models. The approach adopted in the monograph is based on the following paradigms: • Examine the existence of spiky steady states in reaction-diffusion systems and select as observable patterns only the stable ones • Begin by exploring spatially homogeneous two-component activator-inhibitor systems in one or two space dimensions • Extend the studies by considering extra effects or related systems, each motivated by their specific roles in developmental biology, such as spatial inhomogeneities, large reaction rates, altered boundary conditions, saturation terms, convection, many-component systems. Mathematical Aspects of Pattern Formation in Biological Systems will be of interest to graduate students and researchers who are active in reaction-diffusion systems, pattern formation and mathematical biology.