**Author**: S. Sternberg

**Publisher:** Cambridge University Press

**ISBN:** 9780521558853

**Category:** Mathematics

**Page:** 429

**View:** 4166

This book is an introduction to group theory and its application to physics. The author considers the physical applications and develops mathematical theory in a presentation that is unusually cohesive and well-motivated. The book discusses many modern topics including molecular vibrations, homogeneous vector bundles, compact groups and Lie groups, and there is much discussion of the group SU(n) and its representations, which is of great significance in elementary particle physics. The author also considers applications to solid-state physics. This is an essential resource for senior undergraduates and researchers in physics and applied mathematics.

This book, an abridgment of Volumes I and II of the highly respected Group Theory in Physics, presents a carefully constructed introduction to group theory and its applications in physics. The book provides anintroduction to and description of the most important basic ideas and the role that they play in physical problems. The clearly written text contains many pertinent examples that illustrate the topics, even for those with no background in group theory. This work presents important mathematical developments to theoretical physicists in a form that is easy to comprehend and appreciate. Finite groups, Lie groups, Lie algebras, semi-simple Lie algebras, crystallographic point groups and crystallographic space groups, electronic energy bands in solids, atomic physics, symmetry schemes for fundamental particles, and quantum mechanics are all covered in this compact new edition. Covers both group theory and the theory of Lie algebras Includes studies of solid state physics, atomic physics, and fundamental particle physics Contains a comprehensive index Provides extensive examples

The past decade has seen a renewal in the close ties between mathematics and physics. The Chicago Summer Seminar on Applications of Group Theory in Physics and Mathematical Physics, held in July, 1982, was organized to bring together a broad spectrum of scientists from theoretical physics, mathematical physics, and various branches of pure and applied mathematics in order to promote interaction and an exchange of ideas and results in areas of common interest. This volume contains the papers submitted by speakers at the Seminar. The reader will find several groups of articles varying from the most abstract aspects of mathematics to a concrete phenomenological description of some models applicable to particle physics. The papers have been divided into four categories corresponding to the principal topics covered at the Seminar. This is only a rough division, and some papers overlap two or more of these categories.

An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems.Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry.Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained.A set of problems and solutions has been published in a separate booklet.

One of the best-written, most skillful expositions of group theory and its physical applications, directed primarily to advanced undergraduate and graduate students in physics, especially quantum physics. With problems.

This solutions booklet is a supplement to the text book 'Group Theory in Physics' by Wu-Ki Tung. It will be useful to lecturers and students taking the subject as detailed solutions are given.

The Application of Group Theory in Physics is a 17-chapter text based on a course of lectures concerning the principles, concepts, and application of group theory in physics, given at the Gorki University in Kharkov. This text presents first the parts of the theory of representations of finite and continuous groups that are most important in application. Considerable chapters cover the groups of theory of interest in theoretical physics and demonstrate the principles according to which the abstract concepts and the theorems of representation theory are applied in theoretical physics. The remaining chapters provide representations of the rotation group and the Lorentz group. The closing part of this work contains tables of the detailed description of the 230 space groups and for the characters of certain groups. This book is intended primarily for physicists specializing in theoretical physics

The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non contradictory formulations for the investigated phenomena.

Graduate-level text develops group theory relevant to physics and chemistry and illustrates their applications to quantum mechanics, with systematic treatment of quantum theory of atoms, molecules, solids. 1964 edition.

Illustrating the fascinating interplay between physics and mathematics, Groups, Representations and Physics, Second Edition provides a solid foundation in the theory of groups, particularly group representations. For this new, fully revised edition, the author has enhanced the book's usefulness and widened its appeal by adding a chapter on the Cartan-Dynkin treatment of Lie algebras. This treatment, a generalization of the method of raising and lowering operators used for the rotation group, leads to a systematic classification of Lie algebras and enables one to enumerate and construct their irreducible representations. Taking an approach that allows physics students to recognize the power and elegance of the abstract, axiomatic method, the book focuses on chapters that develop the formalism, followed by chapters that deal with the physical applications. It also illustrates formal mathematical definitions and proofs with numerous concrete examples.

This textbook explains the fundamental concepts and techniques of group theory by making use of language familiar to physicists. Application methods to physics are emphasized. New materials drawn from the teaching and research experience of the author are included. This book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry.

This book is aimed at graduate students and young researchers in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory. This book is also suitable for some graduate students in theoretical chemistry.

Group Theory is an indispensable mathematical tool in many branches of chemistry and physics. This book provides a self-contained and rigorous account on the fundamentals and applications of the subject to chemical physics, assuming no prior knowledge of group theory. The first half of the book focuses on elementary topics, such as molecular and crystal symmetry, whilst the latter half is more advanced in nature. Discussions on more complex material such as space groups, projective representations, magnetic crystals and spinor bases, often omitted from introductory texts, are expertly dealt with. With the inclusion of numerous exercises and worked examples, this book will appeal to advanced undergraduates and beginning graduate students studying physical sciences and is an ideal text for use on a two-semester course.

Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)

The Mathematical Study Of Group Theory Was Initiated In The Early Nineteenth Century By Such Mathematicians As Gauss, Cauchy, Abel, Hamilton, Galois, Cayley, And Many Others. However, The Advantages Of Group Theory In Physics Were Not Recognized Till 1925 When It Was Applied For Formal Study Of Theoretical Foundations Of Quantum Mechanics, Atomic Structures And Spectra By, To Name A Few, H A Bethe, E P Wigner, Etc. It Has Now Become Indispensable In Several Branches Of Physics And Physical Chemistry.Dr. Joshi Develops The Mathematics Of Group Theory And Then Goes On To Present Its Applications To Quantum Mechanics, Crystallography, And Solid State Physics. For Proper Comprehension Of Representation Theory, He Has Covered Thoroughly Such Diverse But Relevant Topics As Hilbert Spaces, Function Spaces, Operators, And Direct Sum And Product Of Matrices. He Often Proceeds From The Particular To The General So That The Beginning Student Does Not Have An Impression That Group Theory Is Merely A Branch Of Abstract Mathematics. Various Concepts Have Been Explained Consistently By The Use Of The C4V. Besides, It Contains An Improved And More General Proof Of The Schurs First Lemma And An Interpretation Of The Orthogonality Theorem In The Language Of Vector Spaces (Chapter 3).Throughout The Text The Author Gives Attention To Details And Avoids Complicated Notation. This Is A Valuable Book For Senior Students And Researchers In Physics And Physical Chemistry. A Thorough Understanding Of The Methodology And Results Contained In This Book Will Provide The Reader Sound Theoretical Foundations For Advanced Study Of Quantum Mechanics, Solid State Physics And Atomic And Particle Physics To Help Students A Flow-Chart Explaining Step By Step The Method Of Determining A Parallel-Running Example Illustrating The Procedure In Full Details Have Been Included. An Appendix On Mappings And Functions Has Also Been Added.

This book presents the study of symmetry groups in Physics from a practical perspective, i.e. emphasising the explicit methods and algorithms useful for the practitioner and profusely illustrating by examples.The first half reviews the algebraic, geometrical and topological notions underlying the theory of Lie groups, with a review of the representation theory of finite groups. The topic of Lie algebras is revisited from the perspective of realizations, useful for explicit computations within these groups. The second half is devoted to applications in physics, divided into three main parts — the first deals with space-time symmetries, the Wigner method for representations and applications to relativistic wave equations. The study of kinematical algebras and groups illustrates the properties and capabilities of the notions of contractions, central extensions and projective representations. Gauge symmetries and symmetries in Particle Physics are studied in the context of the Standard Model, finishing with a discussion on Grand-Unified Theories.

This book is a useful and accessible introduction to symmetry principles in particle physics. Concepts of group theory are clearly explained and their applications to subnuclear physics brought up to date. The book begins with introductions to both the types of symmetries known in physics and to group theory and representation theory. Successive chapters deal with the symmetric groups and their Young diagrams, braid groups, Lie groups and algebras, Cartan's classification of semi-simple groups, and the Lie groups most used in physics are treated in detail. Gauge groups are discussed, and applications to elementary particle physics and multiquark systems introduced throughout the book where appropriate. Many worked examples are also included. There is a growing interest in the quark structure of hadrons and in theories of particle interactions based on the principle of gauge symmetries. Students and researchers on theoretical physics will make great strides in their work with the ideas and applications found here.

Now available in a convenient paperback edition! Volume 1 treats in detail the fundamental concepts of the theory of groups and their role in physics, plus their application to molecular and solid state physics. In Volume 2 the theory of Lie groups and Lie algebras is presented and applied to atomic and high-energy physics, concluding with an account of the recently developed gauge theories of fundamental interactions.The extensive appendices contain background material and comprehensive tabulations of ther properties of crystallographic point groups and semi-simple Lie groups and Lie algebras.

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Geared toward theoretical physicists, this advanced text explores the value of modern group-theoretical methods in quantum theory. It explains the theory of groups and their matrix representations, developing them to the level required for applications. The main focus rests upon point and space groups, with applications to electronic and vibrational states. 1969 edition.