Group Theory and Physics

Author: S. Sternberg

Publisher: Cambridge University Press

ISBN: 9780521558853

Category: Mathematics

Page: 429

View: 5722

This book is an introduction to group theory and its application to physics. The author considers the physical applications and develops mathematical theory in a presentation that is unusually cohesive and well-motivated. The book discusses many modern topics including molecular vibrations, homogeneous vector bundles, compact groups and Lie groups, and there is much discussion of the group SU(n) and its representations, which is of great significance in elementary particle physics. The author also considers applications to solid-state physics. This is an essential resource for senior undergraduates and researchers in physics and applied mathematics.

Group Theory in Physics

An Introduction

Author: John F. Cornwell

Publisher: Academic Press

ISBN: 9780080532660

Category: Science

Page: 349

View: 2855

This book, an abridgment of Volumes I and II of the highly respected Group Theory in Physics, presents a carefully constructed introduction to group theory and its applications in physics. The book provides anintroduction to and description of the most important basic ideas and the role that they play in physical problems. The clearly written text contains many pertinent examples that illustrate the topics, even for those with no background in group theory. This work presents important mathematical developments to theoretical physicists in a form that is easy to comprehend and appreciate. Finite groups, Lie groups, Lie algebras, semi-simple Lie algebras, crystallographic point groups and crystallographic space groups, electronic energy bands in solids, atomic physics, symmetry schemes for fundamental particles, and quantum mechanics are all covered in this compact new edition. Covers both group theory and the theory of Lie algebras Includes studies of solid state physics, atomic physics, and fundamental particle physics Contains a comprehensive index Provides extensive examples

Group Theory in Physics

Problems and Solutions

Author: Michael Aivazis

Publisher: World Scientific

ISBN: 9789810204860

Category: Science

Page: 111

View: 707

This solutions booklet is a supplement to the text book 'Group Theory in Physics' by Wu-Ki Tung. It will be useful to lecturers and students taking the subject as detailed solutions are given.

Applications of Group Theory in Physics and Mathematical Physics

Author: MoshŽ Flato,Paul Sally,Gregg Zuckerman

Publisher: American Mathematical Soc.

ISBN: 9780821896860

Category: Science

Page: 420

View: 5347

The past decade has seen a renewal in the close ties between mathematics and physics. The Chicago Summer Seminar on Applications of Group Theory in Physics and Mathematical Physics, held in July, 1982, was organized to bring together a broad spectrum of scientists from theoretical physics, mathematical physics, and various branches of pure and applied mathematics in order to promote interaction and an exchange of ideas and results in areas of common interest. This volume contains the papers submitted by speakers at the Seminar. The reader will find several groups of articles varying from the most abstract aspects of mathematics to a concrete phenomenological description of some models applicable to particle physics. The papers have been divided into four categories corresponding to the principal topics covered at the Seminar. This is only a rough division, and some papers overlap two or more of these categories.

Group Theory In Physics: A Practitioner's Guide

Author: Traubenberg M Rausch De,Strursberg R Campoamor

Publisher: World Scientific

ISBN: 9813273623

Category: Science

Page: 760

View: 8922

This book presents the study of symmetry groups in Physics from a practical perspective, i.e. emphasising the explicit methods and algorithms useful for the practitioner and profusely illustrating by examples.The first half reviews the algebraic, geometrical and topological notions underlying the theory of Lie groups, with a review of the representation theory of finite groups. The topic of Lie algebras is revisited from the perspective of realizations, useful for explicit computations within these groups. The second half is devoted to applications in physics, divided into three main parts — the first deals with space-time symmetries, the Wigner method for representations and applications to relativistic wave equations. The study of kinematical algebras and groups illustrates the properties and capabilities of the notions of contractions, central extensions and projective representations. Gauge symmetries and symmetries in Particle Physics are studied in the context of the Standard Model, finishing with a discussion on Grand-Unified Theories.

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 9296

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Group Theory and Its Application to Physical Problems

Author: Morton Hamermesh

Publisher: Courier Corporation

ISBN: 0486140393

Category: Science

Page: 544

View: 5764

One of the best-written, most skillful expositions of group theory and its physical applications, directed primarily to advanced undergraduate and graduate students in physics, especially quantum physics. With problems.

The Application of Group Theory in Physics

Author: G.Ya. Lyubarskii

Publisher: Elsevier

ISBN: 1483225984

Category: Mathematics

Page: 392

View: 5983

The Application of Group Theory in Physics is a 17-chapter text based on a course of lectures concerning the principles, concepts, and application of group theory in physics, given at the Gorki University in Kharkov. This text presents first the parts of the theory of representations of finite and continuous groups that are most important in application. Considerable chapters cover the groups of theory of interest in theoretical physics and demonstrate the principles according to which the abstract concepts and the theorems of representation theory are applied in theoretical physics. The remaining chapters provide representations of the rotation group and the Lorentz group. The closing part of this work contains tables of the detailed description of the 230 space groups and for the characters of certain groups. This book is intended primarily for physicists specializing in theoretical physics

Applications of the Theory of Groups in Mechanics and Physics

Author: Petre P. Teodorescu,Nicolae-A.P. Nicorovici

Publisher: Springer Science & Business Media

ISBN: 9781402020469

Category: Mathematics

Page: 446

View: 9305

The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non contradictory formulations for the investigated phenomena.

Endliche Gruppen

Eine Einführung in die Theorie der endlichen Gruppen

Author: H. Kurzweil

Publisher: Springer-Verlag

ISBN: 3642953131

Category: Mathematics

Page: 190

View: 1574

Group theory in physics

Author: J. F Cornwell

Publisher: Academic Pr

ISBN: 9780121898021

Category: Group theory

Page: 556

View: 2388

Now available in a convenient paperback edition! Volume 1 treats in detail the fundamental concepts of the theory of groups and their role in physics, plus their application to molecular and solid state physics. In Volume 2 the theory of Lie groups and Lie algebras is presented and applied to atomic and high-energy physics, concluding with an account of the recently developed gauge theories of fundamental interactions.The extensive appendices contain background material and comprehensive tabulations of ther properties of crystallographic point groups and semi-simple Lie groups and Lie algebras.

Group Theory and Quantum Mechanics

Author: Michael Tinkham

Publisher: Courier Corporation

ISBN: 0486131661

Category: Science

Page: 352

View: 7133

Graduate-level text develops group theory relevant to physics and chemistry and illustrates their applications to quantum mechanics, with systematic treatment of quantum theory of atoms, molecules, solids. 1964 edition.

Group Theory for Physicists

Author: Zhongqi Ma

Publisher: World Scientific

ISBN: 9812771417

Category: Science

Page: 491

View: 2287

This textbook explains the fundamental concepts and techniques of group theory by making use of language familiar to physicists. Application methods to physics are emphasized. New materials drawn from the teaching and research experience of the author are included. This book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry.

Group Theory in a Nutshell for Physicists

Author: A. Zee

Publisher: Princeton University Press

ISBN: 1400881188

Category: Science

Page: 632

View: 8619

Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)

Die Gruppentheoretische Methode in der Quantenmechanik

Author: Bartel Leendert van der Waerden

Publisher: Springer-Verlag

ISBN: 3662021870

Category: Mathematics

Page: 160

View: 4732

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Group Theory with Applications in Chemical Physics

Author: Patrick W. M. Jacobs

Publisher: Cambridge University Press

ISBN: 9780521642507

Category: Mathematics

Page: 485

View: 1671

Group Theory is an indispensable mathematical tool in many branches of chemistry and physics. This book provides a self-contained and rigorous account on the fundamentals and applications of the subject to chemical physics, assuming no prior knowledge of group theory. The first half of the book focuses on elementary topics, such as molecular and crystal symmetry, whilst the latter half is more advanced in nature. Discussions on more complex material such as space groups, projective representations, magnetic crystals and spinor bases, often omitted from introductory texts, are expertly dealt with. With the inclusion of numerous exercises and worked examples, this book will appeal to advanced undergraduates and beginning graduate students studying physical sciences and is an ideal text for use on a two-semester course.

Problems & Solutions in Group Theory for Physicists

Author: Zhong-Qi Ma,Xiao-Yan Gu

Publisher: World Scientific

ISBN: 9789812388339

Category: Science

Page: 464

View: 7479

This book is aimed at graduate students and young researchers in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory. This book is also suitable for some graduate students in theoretical chemistry.

Tutorium Quantenfeldtheorie

Was Sie schon immer über QFT wissen wollten, aber bisher nicht zu fragen wagten

Author: Lisa Edelhäuser,Alexander Knochel

Publisher: Springer-Verlag

ISBN: 3642376762

Category: Science

Page: 539

View: 6789

Dieses Buch richtet sich an alle, die sich schon immer gefragt haben, wie die kanonische Quantisierung, die LSZ-Reduktionsformel, Pfadintegrale, Feynman-Graphen und die Renormierung miteinander zusammenhängen. Als locker geschriebene Begleitlektüre zu Vorlesungen über Quantenfeldtheorie oder zum Selbststudium geeignet, gibt sich das Buch gesprächig und liefert Rechentricks und Erklärungen, die für Einsteiger sehr hilfreich sind. Im ersten Teil werden anhand von Skalarfeldern grundlegende Konzepte von der klassischen Feldtheorie bis zur Renormierung eingeführt. Der zweite Teil verallgemeinert diese für Felder mit Spin und legt mit der Einführung des Eichprinzips die Grundlagen für den dritten Teil. Hier werden „Anwendungen auf die reale Welt“ behandelt: Die Quantenelektrodynamik und ihre Renormierung, sowie das Standardmodell der Teilchenphysik und der Higgs-Mechanismus. Durch ausführlich vorgerechnete und in den Text eingebundene Aufgaben eignet sich das Tutorium sowohl zum schnellen Nachschlagen von „Rezepten“, als auch als Lektüre und Arbeitsbuch für Studierende, die eine tiefer gehende Diskussion der Quantenfeldtheorie suchen. Kurze Kapitel zu Grundlagenthemen wie Lie-Algebren und -Gruppen, Relativitätstheorie, Funktionentheorie und Funktionalableitungen ergänzen das Buch. Aus dem Inhalt: Kanonische Quantisierung Green’sche Funktionen, Pfadintegrale und erzeugende Funktionale Feynman-Graphen und Wick-Theorem Regularisierung und Renormierung Eichsymmetrien, Ward-Identitäten und QED Standardmodell der Teilchenphysik und Higgs-Mechanismus Lisa Edelhäuser hat in Würzburg Physik studiert und dort 2012 in theoretischer Elementarteilchenphysik promoviert. Sie war danach als wissenschaftliche Mitarbeiterin an der RWTH Aachen tätig. bAlexander Knochel /bhat in Würzburg und New York Physik studiert und 2009 in Würzburg in theoretischer Elementarteilchenphysik promoviert. Er war als wissenschaftlicher Mitarbeiter an den Universitäten Freiburg, Heidelberg und der RWTH Aachen tätig und hat dabei langjährige Erfahrung bei der Betreuung von Tutorien zur QFT I und II gesammelt.

Group Theory in Subnuclear Physics

Author: Fl Stancu

Publisher: Oxford University Press on Demand

ISBN: 9780198517429

Category: Mathematics

Page: 421

View: 5641

This book is a useful and accessible introduction to symmetry principles in particle physics. Concepts of group theory are clearly explained and their applications to subnuclear physics brought up to date. The book begins with introductions to both the types of symmetries known in physics and to group theory and representation theory. Successive chapters deal with the symmetric groups and their Young diagrams, braid groups, Lie groups and algebras, Cartan's classification of semi-simple groups, and the Lie groups most used in physics are treated in detail. Gauge groups are discussed, and applications to elementary particle physics and multiquark systems introduced throughout the book where appropriate. Many worked examples are also included. There is a growing interest in the quark structure of hadrons and in theories of particle interactions based on the principle of gauge symmetries. Students and researchers on theoretical physics will make great strides in their work with the ideas and applications found here.

Elements of Group Theory for Physicists

Author: A. W. Joshi

Publisher: New Age International

ISBN: 9788122409758

Category: Group theory

Page: 305

View: 8727

The Mathematical Study Of Group Theory Was Initiated In The Early Nineteenth Century By Such Mathematicians As Gauss, Cauchy, Abel, Hamilton, Galois, Cayley, And Many Others. However, The Advantages Of Group Theory In Physics Were Not Recognized Till 1925 When It Was Applied For Formal Study Of Theoretical Foundations Of Quantum Mechanics, Atomic Structures And Spectra By, To Name A Few, H A Bethe, E P Wigner, Etc. It Has Now Become Indispensable In Several Branches Of Physics And Physical Chemistry.Dr. Joshi Develops The Mathematics Of Group Theory And Then Goes On To Present Its Applications To Quantum Mechanics, Crystallography, And Solid State Physics. For Proper Comprehension Of Representation Theory, He Has Covered Thoroughly Such Diverse But Relevant Topics As Hilbert Spaces, Function Spaces, Operators, And Direct Sum And Product Of Matrices. He Often Proceeds From The Particular To The General So That The Beginning Student Does Not Have An Impression That Group Theory Is Merely A Branch Of Abstract Mathematics. Various Concepts Have Been Explained Consistently By The Use Of The C4V. Besides, It Contains An Improved And More General Proof Of The Schurs First Lemma And An Interpretation Of The Orthogonality Theorem In The Language Of Vector Spaces (Chapter 3).Throughout The Text The Author Gives Attention To Details And Avoids Complicated Notation. This Is A Valuable Book For Senior Students And Researchers In Physics And Physical Chemistry. A Thorough Understanding Of The Methodology And Results Contained In This Book Will Provide The Reader Sound Theoretical Foundations For Advanced Study Of Quantum Mechanics, Solid State Physics And Atomic And Particle Physics To Help Students A Flow-Chart Explaining Step By Step The Method Of Determining A Parallel-Running Example Illustrating The Procedure In Full Details Have Been Included. An Appendix On Mappings And Functions Has Also Been Added.