Glimpses of Soliton Theory

The Algebra and Geometry of Nonlinear PDEs

Author: Alex Kasman

Publisher: American Mathematical Soc.

ISBN: 0821852450

Category: Mathematics

Page: 304

View: 1865

Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstrass -functions, the algebra of differential operators, Lax Pairs and their use in discovering other soliton equations, wedge products and decomposability, the KP Equation and Sato's theory relating the Bilinear KP Equation to the geometry of Grassmannians. Notable features of the book include: careful selection of topics and detailed explanations to make this advanced subject accessible to any undergraduate math major, numerous worked examples and thought-provoking but not overly-difficult exercises, footnotes and lists of suggested readings to guide the interested reader to more information, and use of the software package Mathematica« to facilitate computation and to animate the solutions under study. This book provides the reader with a unique glimpse of the unity of mathematics and could form the basis for a self-study, one-semester special topics, or "capstone" course.

KP Solitons and the Grassmannians

Combinatorics and Geometry of Two-Dimensional Wave Patterns

Author: Yuji Kodama

Publisher: Springer

ISBN: 981104094X

Category: Science

Page: 143

View: 7578

This is the first book to treat combinatorial and geometric aspects of two-dimensional solitons. Based on recent research by the author and his collaborators, the book presents new developments focused on an interplay between the theory of solitons and the combinatorics of finite-dimensional Grassmannians, in particular, the totally nonnegative (TNN) parts of the Grassmannians. The book begins with a brief introduction to the theory of the Kadomtsev–Petviashvili (KP) equation and its soliton solutions, called the KP solitons. Owing to the nonlinearity in the KP equation, the KP solitons form very complex but interesting web-like patterns in two dimensions. These patterns are referred to as soliton graphs. The main aim of the book is to investigate the detailed structure of the soliton graphs and to classify these graphs. It turns out that the problem has an intimate connection with the study of the TNN part of the Grassmannians. The book also provides an elementary introduction to the recent development of the combinatorial aspect of the TNN Grassmannians and their parameterizations, which will be useful for solving the classification problem. This work appeals to readers interested in real algebraic geometry, combinatorics, and soliton theory of integrable systems. It can serve as a valuable reference for an expert, a textbook for a special topics graduate course, or a source for independent study projects for advanced upper-level undergraduates specializing in physics and mathematics.

Quantum Field Theory III: Gauge Theory

A Bridge between Mathematicians and Physicists

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

ISBN: 3642224210

Category: Mathematics

Page: 1126

View: 6993

In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

Ramsey Theory on the Integers

Second Edition

Author: Bruce M. Landman, Aaron Robertson

Publisher: American Mathematical Soc.

ISBN: 0821898671

Category: Mathematics

Page: 384

View: 7466

Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an "inequality" version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erdős-Ginzberg-Ziv theorem, and the number of arithmetic progressions under arbitrary colorings. Many new results and proofs have been added, most of which were not known when the first edition was published. Furthermore, the book's tables, exercises, lists of open research problems, and bibliography have all been significantly updated. This innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subject. This breakthrough book will engage students, teachers, and researchers alike.

Introduction to Representation Theory

Author: Pavel I. Etingof,Oleg Golberg,Sebastian Hensel ,Tiankai Liu ,Alex Schwendner ,Dmitry Vaintrob ,Elena Yudovina

Publisher: American Mathematical Soc.

ISBN: 0821853511

Category: Mathematics

Page: 228

View: 3421

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 332292808X

Category: Mathematics

Page: 256

View: 8214

Eine Einführung in die Differentialgeometrie. Es wird großer Wert auf Anschaulichkeit gelegt, was auch durch zahlreiche Abbildungen unterstützt wird. Für die 2. Auflage wurden alle Kapitel gründlich überarbeitet. Hinzu kamen einige neue Übungsaufgaben und zusätzliche Abbildungen.

Algebra für Einsteiger

Von der Gleichungsauflösung zur Galois-Theorie

Author: Jörg Bewersdorff

Publisher: Springer-Verlag

ISBN: 3658022620

Category: Mathematics

Page: 214

View: 2948

Dieses Buch ist eine leicht verständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Der rote Faden ist eines der klassischen und fundamentalen Probleme der Algebra: Nachdem im 16. Jahrhundert allgemeine Lösungsformeln für Gleichungen dritten und vierten Grades gefunden wurden, schlugen entsprechende Bemühungen für Gleichungen fünften Grades fehl. Nach fast dreihundertjähriger Suche führte dies schließlich zur Begründung der so genannten Galois-Theorie: Mit ihrer Hilfe kann festgestellt werden, ob eine Gleichung mittels geschachtelter Wurzelausdrücke lösbar ist. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint. In dieser Auflage wurde ein Kapitel ergänzt, in dem ein alternativer, auf Emil Artin zurückgehender Beweis des Hauptsatzes der Galois-Theorie wiedergegeben wird. Dieses Kapitel kann fast unabhängig von den anderen Kapiteln gelesen werden.

Das kleine Buch der Stringtheorie

Author: Steven S. Gubser

Publisher: Spektrum Akademischer Verlag

ISBN: 9783827428486

Category: Science

Page: 174

View: 5129

Das kleine Buch der Stringtheorie bietet eine knappe und unterhaltsame Einführung in eines der meistdiskutierten Gebiete der modernen Physik. Die Stringtheorie gilt als eine „Theorie für Alles“, mit der sich sämtliche Grundkräfte der Natur beschreiben lassen. Bisher allerdings konnte sie experimentell nicht bestätigt werden, und unter Physikern wird sie sehr kontrovers diskutiert. Dieses Buch gibt Ihnen die Gelegenheit, sich ein eigenes Bild zu machen!

Liebe und Mathematik

Im Herzen einer verborgenen Wirklichkeit

Author: Edward Frenkel

Publisher: Springer-Verlag

ISBN: 3662434210

Category: Mathematics

Page: 317

View: 9993

Elements of Soliton Theory

Author: George L. Lamb

Publisher: John Wiley & Sons

ISBN: N.A

Category: Differential equations, Partial

Page: 289

View: 1540

Erfahrung Mathematik

Author: P.J. Davis,R. Hersh

Publisher: Springer-Verlag

ISBN: 3034850409

Category: Science

Page: 466

View: 4531

ie ältesten uns bekannten mathematischen Schriftta D feln stammen aus der Zeit um 2400 v. ehr. ; aber wir dürfen davon ausgehen, daß das Bedürfnis, Mathematik zu schaffen, ein Ausdruck der menschlichen Zivilisation an sich ist. In vier bis fünf Jahrtausenden hat sich ein gewalti ges System von Praktiken und Begriffen - die Mathematik herangebildet, die in vielfältiger Weise mit unserem Alltag verknüpft ist. Was ist Mathematik? Was bedeutet sie? Wo mit befaßt sie sich? Was sind ihre Methoden? Wie wird sie geschaffen und benützt? Wo ist ihr Platz in der Vielgestalt der menschlichen Erfahrung? Welchen Nutzen bringt sie? Was für Schaden richtet sie an? Welches Gewicht kommt ihr zu? Diese schwierigen Fragen werden noch zusätzlich kompliziert durch die Fülle des Materials und die weitver zweigten Querverbindungen, die es dem einzelnen verun möglichen, alles zu begreifen, geschweige denn, es in seiner Gesamtheit zu erfassen und zwischen den Deckeln eines normalen Buches unterzubringen. Um von dieser Material fülle nicht erdrückt zu werden, haben sich die Autoren für eine andere Betrachtungsweise entschieden. Die Mathema tik ist seit Tausenden von Jahren ein Feld menschlicher Ak tivität. In begrenztem Rahmen ist jeder von uns ein Mathe matiker und betreibt bewußt Mathematik, wenn er zum Beispiel auf dem Markt einkauft, Tapeten ausmißt oder ei nen Keramiktopf mit einem regelmäßigen Muster verziert. In bescheidenem Ausmaß versucht sich auch jeder von uns als mathematischer Denker. Schon mit dem Ausruf «Aber Zahlen lügen nicht!» befinden wir uns in der Gesellschaft von Plato oder Lakatos.

Vorlesungen über Atommechanik

Author: M. Born

Publisher: Springer-Verlag

ISBN: 3642618987

Category: Science

Page: 358

View: 5141

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Geometrie und Billard

Author: Serge Tabachnikov

Publisher: Springer-Verlag

ISBN: 3642319254

Category: Mathematics

Page: 165

View: 6933

Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er elastisch zurückprallt? Welchen Weg nimmt ein Lichtstrahl in einem Gebiet mit ideal reflektierenden Rändern? Anhand dieser und ähnlicher Fragen stellt das vorliegende Buch Zusammenhänge zwischen Billard und Differentialgeometrie, klassischer Mechanik sowie geometrischer Optik her. Dabei beschäftigt sich das Buch unter anderem mit dem Variationsprinzip beim mathematischen Billard, der symplektischen Geometrie von Lichtstrahlen, der Existenz oder Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und dem Mechanismus für Chaos bei der Billarddynamik. Ergänzend wartet dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die sich verwandten Themen widmen, darunter der Vierfarbensatz, die mathematisch-physikalische Beschreibung von Regenbögen, der poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der Schließungssatz von Poncelet.​

Soliton mathematics

Author: Alan C. Newell

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 116

View: 5287

Differentialgleichungen Lösungsmethoden und Lösungen

II. Partielle Differentialgleichungen Erster Ordnung für eine Gesuchte Funktion

Author: N.A

Publisher: Vieweg+Teubner Verlag

ISBN: 9783663120582

Category: Technology & Engineering

Page: 246

View: 2939

Dieser Band 2 behandelt die partiellen Differentialgleichungen erster Ordnung sowie Systeme von solchen für eine gesuchte Funktion. Der erste Teil des Bandes enthält allgemeine Erörterungen über die Lösungs. verhältnisse und Lösungen, der zweite Teil rund 300 Einzel.Differential. gleichungen mit ihren Lösungen. Die unmittelbaren Anwendungen der partiellen Differentialgleichungen erster Ordnung in Physik und Technik sind weit spärlicher als die der Differentialgleichungen zweiter Ordnung, eher trifft man sie noch in der Differentialgeometrie an. Bei weiterem Nachforschen hätte sich wohl noch diese oder jene weitere Anwendung auffinden lassen. Gleichwohl veröffentliche ich den Band schon jetzt, in der Hoffnung, daß die Be. nutzer des Buches zu seiner Vervollkommnung mehr beisteuern werden, als es mir in der nächsten Zeit gelingen könnte. Ich werde für jede solche Zuschrift dankbar sein. Die zweite A uf)age ist, abgesehen von der Verbesserung von Druck. fehlern, ein unveränderter Abdruck der ersten Auflage. Tübingen, im September 1947. E. Kamke. Aus dem Vorwort zur dritten Auflage. Dieses Buch ist seit einer Reihe von Jahren vergriffen. Da immer wieder nach ihm gefragt wird und da im Rahmen des gesteckten Zieles z. Z. nicht sehr Wesentliches hinzuzufügen wäre, haben Verlag und Verfasser sich entschlossen, das Buch nach vorliegenden Platten nochmals zu drucken. Tü bingen, im März 1956. E. Kamke. Vorwort zur vierten Auflage. Von größeren sachlichen Änderungen ist auch bei der vierten Auflage abgesehen worden, jedoch sind die dem Verfasser bekannt gewordenen Fehler verbessert. T üb in gen, im Februar 1959. E. Kamke.

Lineare Algebra

Author: Werner Greub

Publisher: Springer-Verlag

ISBN: 3642663850

Category: Mathematics

Page: 222

View: 7876

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 3535

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 3416

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Wissenschaftliches Rechnen mit MATLAB

Author: Alfio Quarteroni,Fausto Saleri

Publisher: Springer-Verlag

ISBN: 3540293078

Category: Mathematics

Page: 269

View: 4330

Aus den Rezensionen der englischen Auflage: Dieses Lehrbuch ist eine Einführung in das Wissenschaftliche Rechnen und diskutiert Algorithmen und deren mathematischen Hintergrund. Angesprochen werden im Detail nichtlineare Gleichungen, Approximationsverfahren, numerische Integration und Differentiation, numerische Lineare Algebra, gewöhnliche Differentialgleichungen und Randwertprobleme. Zu den einzelnen Themen werden viele Beispiele und Übungsaufgaben sowie deren Lösung präsentiert, die durchweg in MATLAB formuliert sind. Der Leser findet daher nicht nur die graue Theorie sondern auch deren Umsetzung in numerischen, in MATLAB formulierten Code. MATLAB select 2003, Issue 2, p. 50. [Die Autoren] haben ein ausgezeichnetes Werk vorgelegt, das MATLAB vorstellt und eine sehr nützliche Sammlung von MATLAB Funktionen für die Lösung fortgeschrittener mathematischer und naturwissenschaftlicher Probleme bietet. [...] Die Präsentation des Stoffs ist durchgängig gut und leicht verständlich und beinhaltet Lösungen für die Übungen am Ende jedes Kapitels. Als exzellenter Neuzugang für Universitätsbibliotheken- und Buchhandlungen wird dieses Buch sowohl beim Selbststudium als auch als Ergänzung zu anderen MATLAB-basierten Büchern von großem Nutzen sein. Alles in allem: Sehr empfehlenswert. Für Studenten im Erstsemester wie für Experten gleichermassen. S.T. Karris, University of California, Berkeley, Choice 2003.