Glimpses of Soliton Theory

The Algebra and Geometry of Nonlinear PDEs

Author: Alex Kasman

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 304

View: 853

Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstrass -functions, the algebra of differential operators, Lax Pairs and their use in discovering other soliton equations, wedge products and decomposability, the KP Equation and Sato's theory relating the Bilinear KP Equation to the geometry of Grassmannians. Notable features of the book include: careful selection of topics and detailed explanations to make this advanced subject accessible to any undergraduate math major, numerous worked examples and thought-provoking but not overly-difficult exercises, footnotes and lists of suggested readings to guide the interested reader to more information, and use of the software package Mathematica« to facilitate computation and to animate the solutions under study. This book provides the reader with a unique glimpse of the unity of mathematics and could form the basis for a self-study, one-semester special topics, or "capstone" course.

KP Solitons and the Grassmannians

Combinatorics and Geometry of Two-Dimensional Wave Patterns

Author: Yuji Kodama

Publisher: Springer

ISBN:

Category: Science

Page: 138

View: 849

This is the first book to treat combinatorial and geometric aspects of two-dimensional solitons. Based on recent research by the author and his collaborators, the book presents new developments focused on an interplay between the theory of solitons and the combinatorics of finite-dimensional Grassmannians, in particular, the totally nonnegative (TNN) parts of the Grassmannians. The book begins with a brief introduction to the theory of the Kadomtsev–Petviashvili (KP) equation and its soliton solutions, called the KP solitons. Owing to the nonlinearity in the KP equation, the KP solitons form very complex but interesting web-like patterns in two dimensions. These patterns are referred to as soliton graphs. The main aim of the book is to investigate the detailed structure of the soliton graphs and to classify these graphs. It turns out that the problem has an intimate connection with the study of the TNN part of the Grassmannians. The book also provides an elementary introduction to the recent development of the combinatorial aspect of the TNN Grassmannians and their parameterizations, which will be useful for solving the classification problem. This work appeals to readers interested in real algebraic geometry, combinatorics, and soliton theory of integrable systems. It can serve as a valuable reference for an expert, a textbook for a special topics graduate course, or a source for independent study projects for advanced upper-level undergraduates specializing in physics and mathematics.

Quantum Field Theory III: Gauge Theory

A Bridge between Mathematicians and Physicists

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 1126

View: 688

In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

Introduction to Representation Theory

Author: Pavel I. Etingof

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 228

View: 424

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Computability Theory

Author: Rebecca Weber

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 203

View: 166

What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.

Elements of Soliton Theory

Author: George L. Lamb

Publisher: John Wiley & Sons

ISBN:

Category: Differential equations, Partial

Page: 289

View: 552

The theory of magnetism

Author: Daniel Charles Mattis

Publisher: Not Avail

ISBN:

Category: Science

Page: 300

View: 188

Starting with a historical introduction to the study of magnetism - one of the oldest sciences known to man - before considering the most modern theories and observations (magnetic bubbles and soap films, effects of magnetic impurities in metals and spin glasses), this book develops the concepts and the mathematical expertise necessary to understand contemporary research in this field. Magnetic systems are important in technology and applied science, but they are also prototypes of more complex mathematical structures of great importance to theoretical physics. These connections are made repeatedly in this volume. After development of the necessary quantum theory of angular momentum and of interacting electron systems, a number of models which have been successful in the interpretation of experimental results are introduced: the Ising model, the Heisenberg model, the Stoner theory, the Kondo phenomenon, and so on. In the second edition the thorough approach and the main features which made the first edition a popular text have been retained. All important theories are worked out in detail using methods and notation that are uniform throughout. Footnotes and an extensive bibliography provide a guide to the original literature. A number of problems test the reader's skill.

Current trends in physics

proceedings of the First Decade Celebration Symposium of the Institute of Physics, Bhubaneswar, February, 1986

Author: Avinash Khare

Publisher:

ISBN:

Category: Science

Page: 292

View: 206