Glimpses of Soliton Theory

The Algebra and Geometry of Nonlinear PDEs

Author: Alex Kasman

Publisher: American Mathematical Soc.

ISBN: 0821852450

Category: Mathematics

Page: 304

View: 7126

Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstrass -functions, the algebra of differential operators, Lax Pairs and their use in discovering other soliton equations, wedge products and decomposability, the KP Equation and Sato's theory relating the Bilinear KP Equation to the geometry of Grassmannians. Notable features of the book include: careful selection of topics and detailed explanations to make this advanced subject accessible to any undergraduate math major, numerous worked examples and thought-provoking but not overly-difficult exercises, footnotes and lists of suggested readings to guide the interested reader to more information, and use of the software package Mathematica« to facilitate computation and to animate the solutions under study. This book provides the reader with a unique glimpse of the unity of mathematics and could form the basis for a self-study, one-semester special topics, or "capstone" course.

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834896551

Category: Mathematics

Page: 280

View: 6464

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.

KP Solitons and the Grassmannians

Combinatorics and Geometry of Two-Dimensional Wave Patterns

Author: Yuji Kodama

Publisher: Springer

ISBN: 981104094X

Category: Science

Page: 138

View: 5952

This is the first book to treat combinatorial and geometric aspects of two-dimensional solitons. Based on recent research by the author and his collaborators, the book presents new developments focused on an interplay between the theory of solitons and the combinatorics of finite-dimensional Grassmannians, in particular, the totally nonnegative (TNN) parts of the Grassmannians. The book begins with a brief introduction to the theory of the Kadomtsev–Petviashvili (KP) equation and its soliton solutions, called the KP solitons. Owing to the nonlinearity in the KP equation, the KP solitons form very complex but interesting web-like patterns in two dimensions. These patterns are referred to as soliton graphs. The main aim of the book is to investigate the detailed structure of the soliton graphs and to classify these graphs. It turns out that the problem has an intimate connection with the study of the TNN part of the Grassmannians. The book also provides an elementary introduction to the recent development of the combinatorial aspect of the TNN Grassmannians and their parameterizations, which will be useful for solving the classification problem. This work appeals to readers interested in real algebraic geometry, combinatorics, and soliton theory of integrable systems. It can serve as a valuable reference for an expert, a textbook for a special topics graduate course, or a source for independent study projects for advanced upper-level undergraduates specializing in physics and mathematics.

Das Mathebuch

Von Pythagoras bis in die 57. Dimension. 250 Meilensteine in der Geschichte der Mathematik

Author: Clifford A. Pickover

Publisher: N.A

ISBN: 9789089982803

Category:

Page: 527

View: 2326

Quantum Field Theory III: Gauge Theory

A Bridge between Mathematicians and Physicists

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

ISBN: 3642224210

Category: Mathematics

Page: 1126

View: 8266

In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

Das kleine Buch der Stringtheorie

Author: Steven S. Gubser

Publisher: Spektrum Akademischer Verlag

ISBN: 9783827428486

Category: Science

Page: 174

View: 6188

Das kleine Buch der Stringtheorie bietet eine knappe und unterhaltsame Einführung in eines der meistdiskutierten Gebiete der modernen Physik. Die Stringtheorie gilt als eine „Theorie für Alles“, mit der sich sämtliche Grundkräfte der Natur beschreiben lassen. Bisher allerdings konnte sie experimentell nicht bestätigt werden, und unter Physikern wird sie sehr kontrovers diskutiert. Dieses Buch gibt Ihnen die Gelegenheit, sich ein eigenes Bild zu machen!

Ramsey Theory on the Integers

Second Edition

Author: Bruce M. Landman, Aaron Robertson

Publisher: American Mathematical Soc.

ISBN: 0821898671

Category: Mathematics

Page: 384

View: 4453

Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an "inequality" version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erdős-Ginzberg-Ziv theorem, and the number of arithmetic progressions under arbitrary colorings. Many new results and proofs have been added, most of which were not known when the first edition was published. Furthermore, the book's tables, exercises, lists of open research problems, and bibliography have all been significantly updated. This innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subject. This breakthrough book will engage students, teachers, and researchers alike.

Introduction to Representation Theory

Author: Pavel I. Etingof,Oleg Golberg,Sebastian Hensel ,Tiankai Liu ,Alex Schwendner ,Dmitry Vaintrob ,Elena Yudovina

Publisher: American Mathematical Soc.

ISBN: 0821853511

Category: Mathematics

Page: 228

View: 8779

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Liebe und Mathematik

Im Herzen einer verborgenen Wirklichkeit

Author: Edward Frenkel

Publisher: Springer-Verlag

ISBN: 3662434210

Category: Mathematics

Page: 317

View: 4959

Der Weg zur Wirklichkeit

Die Teilübersetzung für Seiteneinsteiger

Author: Roger Penrose

Publisher: Spektrum Akademischer Verlag

ISBN: 9783827423412

Category: Science

Page: 357

View: 3927

Der Weg zur Wirklichkeit ist eine Kurzübersetzung des Penrose-Klassikers "The Road to Reality", die aus dem Monumentalwerk für Physik- und Mathematikexperten die allgemeinverständlichen Kapitel für interessierte Laien lesbar macht. Wer ein Faible für die Grundfragen der Wissenschaft, einen Blick für Geometrie, einen Sinn für Zahlen und Neugier für kosmologische Theorien hat, findet in diesem klar und kompetent geschriebenen Buch überraschende und provozierende Ideen. Schulmathematik wie die Bruchrechnung oder der berühmte Pythagorassatz lassen sich auf dem Weg zur Wirklichkeit völlig neu entdecken - im Spannungsfeld zwischen platonischer Mathematik, physikalischer Welt und menschlichem Bewusstsein.

Lineare Algebra

Author: Werner Greub

Publisher: Springer-Verlag

ISBN: 3642663850

Category: Mathematics

Page: 222

View: 9852

Vorlesungen über Atommechanik

Author: M. Born

Publisher: Springer-Verlag

ISBN: 3642618987

Category: Science

Page: 358

View: 9241

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Wissenschaftliches Rechnen mit MATLAB

Author: Alfio Quarteroni,Fausto Saleri

Publisher: Springer-Verlag

ISBN: 3540293078

Category: Mathematics

Page: 269

View: 708

Aus den Rezensionen der englischen Auflage: Dieses Lehrbuch ist eine Einführung in das Wissenschaftliche Rechnen und diskutiert Algorithmen und deren mathematischen Hintergrund. Angesprochen werden im Detail nichtlineare Gleichungen, Approximationsverfahren, numerische Integration und Differentiation, numerische Lineare Algebra, gewöhnliche Differentialgleichungen und Randwertprobleme. Zu den einzelnen Themen werden viele Beispiele und Übungsaufgaben sowie deren Lösung präsentiert, die durchweg in MATLAB formuliert sind. Der Leser findet daher nicht nur die graue Theorie sondern auch deren Umsetzung in numerischen, in MATLAB formulierten Code. MATLAB select 2003, Issue 2, p. 50. [Die Autoren] haben ein ausgezeichnetes Werk vorgelegt, das MATLAB vorstellt und eine sehr nützliche Sammlung von MATLAB Funktionen für die Lösung fortgeschrittener mathematischer und naturwissenschaftlicher Probleme bietet. [...] Die Präsentation des Stoffs ist durchgängig gut und leicht verständlich und beinhaltet Lösungen für die Übungen am Ende jedes Kapitels. Als exzellenter Neuzugang für Universitätsbibliotheken- und Buchhandlungen wird dieses Buch sowohl beim Selbststudium als auch als Ergänzung zu anderen MATLAB-basierten Büchern von großem Nutzen sein. Alles in allem: Sehr empfehlenswert. Für Studenten im Erstsemester wie für Experten gleichermassen. S.T. Karris, University of California, Berkeley, Choice 2003.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 6630

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Elements of Soliton Theory

Author: George L. Lamb

Publisher: John Wiley & Sons

ISBN: N.A

Category: Differential equations, Partial

Page: 289

View: 7056

Programmieren mit R

Author: Uwe Ligges

Publisher: Springer-Verlag

ISBN: 3540267328

Category: Mathematics

Page: 237

View: 7623

R ist eine objekt-orientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik - frei erhältlich unter der GPL. Ziel dieses Buches ist es, nicht nur ausführlich in die Grundlagen der Sprache R einzuführen, sondern auch ein Verständnis der Struktur der Sprache zu vermitteln. Leicht können so eigene Methoden umgesetzt, Objektklassen definiert und ganze Pakete aus Funktionen und zugehöriger Dokumentation zusammengestellt werden. Die enormen Grafikfähigkeiten von R werden detailliert beschrieben. Das Buch richtet sich an alle, die R als flexibles Werkzeug zur Datenenalyse und -visualisierung einsetzen möchten: Studierende, die Daten in Projekten oder für ihre Diplomarbeit analysieren möchten, Forschende, die neue Methoden ausprobieren möchten, und diejenigen, die in der Wirtschaft täglich Daten aufbereiten, analysieren und anderen in komprimierter Form präsentieren.

Geometrie und Billard

Author: Serge Tabachnikov

Publisher: Springer-Verlag

ISBN: 3642319254

Category: Mathematics

Page: 165

View: 1986

Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er elastisch zurückprallt? Welchen Weg nimmt ein Lichtstrahl in einem Gebiet mit ideal reflektierenden Rändern? Anhand dieser und ähnlicher Fragen stellt das vorliegende Buch Zusammenhänge zwischen Billard und Differentialgeometrie, klassischer Mechanik sowie geometrischer Optik her. Dabei beschäftigt sich das Buch unter anderem mit dem Variationsprinzip beim mathematischen Billard, der symplektischen Geometrie von Lichtstrahlen, der Existenz oder Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und dem Mechanismus für Chaos bei der Billarddynamik. Ergänzend wartet dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die sich verwandten Themen widmen, darunter der Vierfarbensatz, die mathematisch-physikalische Beschreibung von Regenbögen, der poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der Schließungssatz von Poncelet.​

Algebra für Einsteiger

Von der Gleichungsauflösung zur Galois-Theorie

Author: Jörg Bewersdorff

Publisher: Springer-Verlag

ISBN: 332291562X

Category: Mathematics

Page: 193

View: 9892

Eine leichtverständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint.

Über Zahlen und Spiele

Author: John H. Conway

Publisher: Springer-Verlag

ISBN: 3322889971

Category: Mathematics

Page: 205

View: 7772