*Fuzzy Fractional Differential Equations and Applications*

**Author**: Snehashish Chakraverty,Smita Tapaswini,Diptiranjan Behera

**Publisher:** John Wiley & Sons

**ISBN:** 111900411X

**Category:** Mathematics

**Page:** 272

**View:** 9791

Presents a systematic treatment of fuzzy fractional differential equations as well as newly developed computational methods to model uncertain physical problems Complete with comprehensive results and solutions, Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications details newly developed methods of fuzzy computational techniquesneeded to model solve uncertainty. Fuzzy differential equations are solved via various analytical andnumerical methodologies, and this book presents their importance for problem solving, prototypeengineering design, and systems testing in uncertain environments. In recent years, modeling of differential equations for arbitrary and fractional order systems has been increasing in its applicability, and as such, the authors feature examples from a variety of disciplines to illustrate the practicality and importance of the methods within physics, applied mathematics, engineering, and chemistry, to name a few. The fundamentals of fractional differential equations and the basic preliminaries of fuzzy fractional differential equations are first introduced, followed by numerical solutions, comparisons of various methods, and simulated results. In addition, fuzzy ordinary, partial, linear, and nonlinear fractional differential equations are addressed to solve uncertainty in physical systems. In addition, this book features: Basic preliminaries of fuzzy set theory, an introduction of fuzzy arbitrary order differential equations, and various analytical and numerical procedures for solving associated problems Coverage on a variety of fuzzy fractional differential equations including structural, diffusion, and chemical problems as well as heat equations and biomathematical applications Discussions on how to model physical problems in terms of nonprobabilistic methods and provides systematic coverage of fuzzy fractional differential equations and its applications Uncertainties in systems and processes with a fuzzy concept Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications is an ideal resource for practitioners, researchers, and academicians in applied mathematics, physics, biology, engineering, computer science, and chemistry who need to model uncertain physical phenomena and problems. The book is appropriate for graduate-level courses on fractional differential equations for students majoring in applied mathematics, engineering, physics, and computer science.

Differential equations play a vital role in the modeling of physical and engineering problems, such as those in solid and fluid mechanics, viscoelasticity, biology, physics, and many other areas. In general, the parameters, variables and initial conditions within a model are considered as being defined exactly. In reality there may be only vague, imprecise or incomplete information about the variables and parameters available. This can result from errors in measurement, observation, or experimental data; application of different operating conditions; or maintenance induced errors. To overcome uncertainties or lack of precision, one can use a fuzzy environment in parameters, variables and initial conditions in place of exact (fixed) ones, by turning general differential equations into Fuzzy Differential Equations ("FDEs"). In real applications it can be complicated to obtain exact solution of fuzzy differential equations due to complexities in fuzzy arithmetic, creating the need for use of reliable and efficient numerical techniques in the solution of fuzzy differential equations. These include fuzzy ordinary and partial, fuzzy linear and nonlinear, and fuzzy arbitrary order differential equations. This unique work?provides a new direction for the reader in the use of basic concepts of fuzzy differential equations, solutions and its applications. It can serve as an essential reference work for students, scholars, practitioners, researchers and academicians in engineering and science who need to model uncertain physical problems.

Fuzzy classifiers are important tools in exploratory data analysis, which is a vital set of methods used in various engineering, scientific and business applications. Fuzzy classifiers use fuzzy rules and do not require assumptions common to statistical classification. Rough set theory is useful when data sets are incomplete. It defines a formal approximation of crisp sets by providing the lower and the upper approximation of the original set. Systems based on rough sets have natural ability to work on such data and incomplete vectors do not have to be preprocessed before classification. To achieve better performance than existing machine learning systems, fuzzy classifiers and rough sets can be combined in ensembles. Such ensembles consist of a finite set of learning models, usually weak learners. The present book discusses the three aforementioned fields – fuzzy systems, rough sets and ensemble techniques. As the trained ensemble should represent a single hypothesis, a lot of attention is placed on the possibility to combine fuzzy rules from fuzzy systems being members of classification ensemble. Furthermore, an emphasis is placed on ensembles that can work on incomplete data, thanks to rough set theory. .

This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.

In recent years, a great number of publications have explored the use of genetic algorithms as a tool for designing fuzzy systems. Genetic Fuzzy Systems explores and discusses this symbiosis of evolutionary computation and fuzzy logic. The book summarizes and analyzes the novel field of genetic fuzzy systems, paying special attention to genetic algorithms that adapt and learn the knowledge base of a fuzzy-rule-based system. It introduces the general concepts, foundations and design principles of genetic fuzzy systems and covers the topic of genetic tuning of fuzzy systems. It also introduces the three fundamental approaches to genetic learning processes in fuzzy systems: the Michigan, Pittsburgh and Iterative-learning methods. Finally, it explores hybrid genetic fuzzy systems such as genetic fuzzy clustering or genetic neuro-fuzzy systems and describes a number of applications from different areas. Genetic Fuzzy System represents a comprehensive treatise on the design of the fuzzy-rule-based systems using genetic algorithms, both from a theoretical and a practical perspective. It is a valuable compendium for scientists and engineers concerned with research and applications in the domain of fuzzy systems and genetic algorithms.

Foundations of Fuzzy Control: A Practical Approach, 2nd Edition has been significantly revised and updated, with two new chapters on Gain Scheduling Control and Neurofuzzy Modelling. It focuses on the PID (Proportional, Integral, Derivative) type controller which is the most widely used in industry and systematically analyses several fuzzy PID control systems and adaptive control mechanisms. This new edition covers the basics of fuzzy control and builds a solid foundation for the design of fuzzy controllers, by creating links to established linear and nonlinear control theory. Advanced topics are also introduced and in particular, common sense geometry is emphasised. Key features Sets out practical worked through problems, examples and case studies to illustrate each type of control system Accompanied by a website hosting downloadable MATLAB programs Accompanied by an online course on Fuzzy Control which is taught by the author. Students can access further material and enrol at the companion website Foundations of Fuzzy Control: A Practical Approach, 2nd Edition is an invaluable resource for researchers, practitioners, and students in engineering. It is especially relevant for engineers working with automatic control of mechanical, electrical, or chemical systems.

Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications consists of 21 contributed chapters by subject experts. Chapters offer practical solutions and novel methods for recent research problems in the multidisciplinary applications of fractional order systems, such as FPGA, circuits, memristors, control algorithms, photovoltaic systems, robot manipulators, oscillators, etc. This book is ideal for researchers working in the modeling and applications of both continuous-time and discrete-time dynamics and chaotic systems. Researchers from academia and industry who are working in research areas such as control engineering, electrical engineering, mechanical engineering, computer science, and information technology will find the book most informative. Discusses multi-disciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes new circuits and systems based on the new nonlinear elements Covers most of the linear and nonlinear fractional-order theorems that will solve many scientific issues for researchers Closes the gap between theoretical approaches and real-world applications Provides MATLAB® and Simulink code for many of the applications in the book

This book explains the essentials of fractional calculus and demonstrates its application in control system modeling, analysis and design. It presents original research to find high-precision solutions to fractional-order differentiations and differential equations. Numerical algorithms and their implementations are proposed to analyze multivariable fractional-order control systems. Through high-quality MATLAB programs, it provides engineers and applied mathematicians with theoretical and numerical tools to design control systems. Contents Introduction to fractional calculus and fractional-order control Mathematical prerequisites Definitions and computation algorithms of fractional-order derivatives and Integrals Solutions of linear fractional-order differential equations Approximation of fractional-order operators Modelling and analysis of multivariable fractional-order transfer function Matrices State space modelling and analysis of linear fractional-order Systems Numerical solutions of nonlinear fractional-order differential Equations Design of fractional-order PID controllers Frequency domain controller design for multivariable fractional-order Systems Inverse Laplace transforms involving fractional and irrational Operations FOTF Toolbox functions and models Benchmark problems for the assessment of fractional-order differential equation algorithms

The hydrological sciences typically present grey or fuzzy information, making them quite messy and a choice challenge for fuzzy logic application. Providing readers with the first book to cover fuzzy logic modeling as it relates to water science, the author takes an approach that incorporates verbal expert views and other parameters that allow him to eschew the use of mathematics. The book’s first seven chapters expose the fuzzy logic principles, processes and design for a fruitful inference system with many hydrological examples. The last two chapters present the use of those principles in larger scale hydrological scales within the hydrological cycle.

The book provides an introduction to basic concepts as well as some recent advancements in fuzzy set theory, approximate reasoning, artificial neural networks & clustering methods. These methodologies create together the so-called soft computing, which is part of a computational approach to system intelligence. The book deals with an overview of fuzzy set theory, foundations for approximate reasoning principles, specific equivalence of inference results using logical conjunctive interpretations of if-then rules, supervised & unsupervised artificial neural networks, a new generalized conditional fuzzy clustering method, artificial neural networks based fuzzy inference system with parameterized consequences in if-then rules, MATLAB(R) m-files implementation of neuro-fuzzy systems, detailed study of neuro-fuzzy systems applications.

Annotation This book comprises a selection of papers from IFSA 2007 on new methods and theories that contribute to the foundations of fuzzy logic and soft computing. These papers were selected from over 400 submissions and constitute an important contribution to the theory and applications of fuzzy logic and soft computing methodologies. Soft Computing consists of several computing paradigms, including fuzzy logic, neural networks, genetic algorithms, and other techniques, which can be used to produce powerful intelligent systems for solving real-world problems. This book is intended to be a major reference for scientists and engineers interested in applying new computational and mathematical tools to achieve intelligent solution to complex problems. We consider that this book can also be used to get novel ideas for new lines of research, or to continue the lines of research proposed by the authors of the papers contained in the book. The 80 papers presented were carefully reviewed and selected form more than 400 submissions. The papers are organized in topical sections on relation between interval and fuzzy techniques, intuitionistic fuzzy sets and their applications, the application of fuzzy logic and soft computing in flexible querying, philosophical and human-scientific aspects of soft computing, search engine and information processing and retrieval, perception based data mining and decision making, joint model-based and data-based learning: the fuzzy logic approach, fuzzy possibilistic optimization, fuzzy trees, fuzzy logic theory, type-2 fuzzy logic, fuzzy logic applications, neural networks and control, as well as intelligent agents and knowledge ant colony.

The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control.

During the last 20 years the Portuguese association of automatic control, Associação Portuguesa de Controlo Automático, with the sponsorship of IFAC have established the CONTROLO conference as a reference international forum where an effective exchange of knowledge and experience amongst researchers active in various theoretical and applied areas of systems and control can take place, always including considerable space for promoting new technical applications and developments, real-world challenges and success stories. In this 11th edition the CONTROLO conference evolved by introducing two strategic partnerships with Spanish and Brazilian associations in automatic control, Comité Español de Automática and Sociedade Brasileira de Automatica, respectively.

sections dealing with fuzzy functions and fuzzy random functions are certain to be of special interest. The reader is expected to be in command of the knowledge gained in a basic university mathematics course, with the inclusion of stochastic elements. A specification of uncertainty in any particular case is often difficult. For this reason Chaps. 3 and 4 are devoted solely to this problem. The derivation of fuzzy variables for representing informal and lexical uncertainty reflects the subjective assessment of objective conditions in the form of a membership function. Techniques for modeling fuzzy random variables are presented for data that simultaneously exhibit stochastic and nonstochastic properties. The application of fuzzy randomness is demonstrated in three fields of civil engineering and computational mechanics: structural analysis, safety assessment, and design. The methods of fuzzy structural analysis and fuzzy probabilistic structural analysis developed in Chap. 5 are applicable without restriction to arbitrary geometrically and physically nonlinear problems. The most important forms of the latter are the Fuzzy Finite Element Method (FFEM) and the Fuzzy Stochastic Finite Element Method (FSFEM).

Neural Fuzzy Systems provides a comprehensive, up-to-date introduction to the basic theories of fuzzy systems and neural networks, as well as an exploration of how these two fields can be integrated to create Neural-Fuzzy Systems. It includes Matlab software, with a Neural Network Toolkit, and a Fuzzy System Toolkit.

Fuzzy Control Systems explores one of the most active areas of research involving fuzzy set theory. The contributors address basic issues concerning the analysis, design, and application of fuzzy control systems. Divided into three parts, the book first devotes itself to the general theory of fuzzy control systems. The second part deals with a variety of methodologies and algorithms used in the analysis and design of fuzzy controllers. The various paradigms include fuzzy reasoning models, fuzzy neural networks, fuzzy expert systems, and genetic algorithms. The final part considers current applications of fuzzy control systems. This book should be required reading for researchers, practitioners, and students interested in fuzzy control systems, artificial intelligence, and fuzzy sets and systems.

Data science is proving to be one of the major trends of the second decade of the 21st century. Even though the term was coined by Peter Naur in the mid 1960s as ‘datalogy’, or the science of data, it is in the context of data analytics, and especially of big data, that data science has emerged as the new paradigm. Fuzzy and Crisp strategies are two of the most widespread approaches within the computational intelligence umbrella. This book presents 65 papers from the 3rd International Conference on Fuzzy Systems and Data Mining (FSDM 2017), held in Hualien, Taiwan, in November 2017. All papers were carefully reviewed by program committee members, who took into consideration the breadth and depth of the research topics that fall within the scope of FSDM. Offering a state-of-the-art overview of fuzzy systems and data mining, the publication will be of interest to all those whose work involves data science.