Applied Theory of Functional Differential Equations

Author: V. Kolmanovskii

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 234

View: 801

This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.

Generalized Solutions of Functional Differential Equations

Author: Joseph Wiener

Publisher: World Scientific

ISBN:

Category: Mathematics

Page: 410

View: 471

The need to investigate functional differential equations with discontinuous delays is addressed in this book. Recording the work and findings of several scientists on differential equations with piecewise continuous arguments over the last few years, this book serves as a useful source of reference. Great interest is placed on discussing the stability, oscillation and periodic properties of the solutions. Considerable attention is also given to the study of initial and boundary-value problems for partial differential equations of mathematical physics with discontinuous time delays. In fact, a large part of the book is devoted to the exploration of differential and functional differential equations in spaces of generalized functions (distributions) and contains a wealth of new information in this area. Each topic discussed appears to provide ample opportunity for extending the known results. A list of new research topics and open problems is also included as an update.

Stability by Fixed Point Theory for Functional Differential Equations

Author: T. A. Burton

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 368

View: 738

The first general introduction to stability of ordinary and functional differential equations by means of fixed point techniques, this text is suitable for advanced undergraduates and graduate students. 2006 edition.

Functional Differential Equations

Advances and Applications

Author: Constantin Corduneanu

Publisher: John Wiley & Sons

ISBN:

Category: Mathematics

Page: 368

View: 730

Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.

Boundary Value Problems for Functional Differential Equations

Author: Johnny Henderson

Publisher: World Scientific

ISBN:

Category: Mathematics

Page: 306

View: 119

Functional differential equations have received attention since the 1920's. Within that development, boundary value problems have played a prominent role in both the theory and applications dating back to the 1960's. This book attempts to present some of the more recent developments from a cross-section of views on boundary value problems for functional differential equations.Contributions represent not only a flavor of classical results involving, for example, linear methods and oscillation-nonoscillation techiques, but also modern nonlinear methods for problems involving stability and control as well as cone theoretic, degree theoretic, and topological transversality strategies. A balance with applications is provided through a number of papers dealing with a pendulum with dry friction, heat conduction in a thin stretched resistance wire, problems involving singularities, impulsive systems, traveling waves, climate modeling, and economic control.With the importance of boundary value problems for functional differential equations in applications, it is not surprising that as new applications arise, modifications are required for even the definitions of the basic equations. This is the case for some of the papers contributed by the Perm seminar participants. Also, some contributions are devoted to delay Fredholm integral equations, while a few papers deal with what might be termed as boundary value problems for delay-difference equations.

Introduction to the Theory and Applications of Functional Differential Equations

Author: V. Kolmanovskii

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 648

View: 685

This book covers the most important issues in the theory of functional differential equations and their applications for both deterministic and stochastic cases. Among the subjects treated are qualitative theory, stability, periodic solutions, optimal control and estimation, the theory of linear equations, and basic principles of mathematical modelling. The work, which treats many concrete problems in detail, gives a good overview of the entire field and will serve as a stimulating guide to further research. Audience: This volume will be of interest to researchers and (post)graduate students working in analysis, and in functional analysis in particular. It will also appeal to mathematical engineers, industrial mathematicians, mathematical system theoreticians and mathematical modellers.

Functional Differential Equations

II. C*-Applications Part 1: Equations with Continuous Coefficients

Author: A. B. Antonevich

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 400

View: 266

Together with the authors' Volume I. C*-Theory, the two parts comprising Functional Differential Equations: II. C*-Applications form a masterful work-the first thorough, up-to-date exposition of this field of modern analysis lying between differential equations and C*-algebras. The two parts of Volume II contain the applications of the C*-structures and theory developed in Volume I. They show the technique of using the C*-results in the study of the solvability conditions of non-local functional differential equations and demonstrate the fundamental principles underlying the interrelations between C* and functional differential objects. The authors focus on non-local pseudodifferential, singular integral, and Toeplitz operators-with continuous and piecewise continuous coefficients-convolution type operators with oscillating coefficients and shifts, and operators associated with non-local boundary value problems containing transformation operators of an argument on the boundary. They build the symbolic calculus for all these classes of operators, use it to treat concrete examples of non-local operators, present the explicit computation of their Fredholmity conditions and the index formulae, and obtain a number of related results. Part 1: Equations with Continuous Coefficients and Part 2: Equations with Discontinuous Coefficients and Boundary Value Problems can each stand alone and prove a valuable resource for researchers and students interested in operator algebraic methods in the theory of functional differential equations, and to pure C*-algebraists looking for important and promising new applications. Together these books form a powerful library for this intriguing field of modern analysis.

Oscillation Theory for Functional Differential Equations

Author: Lynn Erbe

Publisher: Routledge

ISBN:

Category: Mathematics

Page: 504

View: 595

Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.

Bifurcation Theory of Functional Differential Equations

Author: Shangjiang Guo

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 289

View: 255

This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).