**Author**: Vladimir Semenovich Pugachev,Igor? Nikolaevich Sinit?s?yn

**Publisher:** World Scientific

**ISBN:** 9789810237233

**Category:** Mathematics

**Page:** 730

**View:** 9237

This book is intended for those having only a moderate background in mathematics, who need to increase their mathematical knowledge for development in their areas of work and to read the related mathematical literature. The material covered, which includes practically all the information on functional analysis that may be necessary for those working in various areas of applications of mathematics, as well as the simplicity of presentation, differentiates this book from others. About 300 examples and more than 500 problems are provided to help readers understand and master the theories presented. The list of references enables readers to explore those topics in which they are interested, and gather further information about applications used as examples in the book.Applications: Probability Theory and Statistics, Signal and Image Processing, Systems Analysis and Design.

This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.

Functional analysis is a powerful tool when applied to mathematical problems arising from physical situations. The present book provides, by careful selection of material, a collection of concepts and techniques essential for the modern practitioner. Emphasis is placed on the solution of equations (including nonlinear and partial differential equations). The assumed background is limited to elementary real variable theory and finite-dimensional vector spaces. Key Features - Provides an ideal transition between introductory math courses and advanced graduate study in applied mathematics, the physical sciences, or engineering. - Gives the reader a keen understanding of applied functional analysis, building progressively from simple background material to the deepest and most significant results. - Introduces each new topic with a clear, concise explanation. - Includes numerous examples linking fundamental principles with applications. - Solidifies the reader’s understanding with numerous end-of-chapter problems. · Provides an ideal transition between introductory math courses and advanced graduate study in applied mathematics, the physical sciences, or engineering. · Gives the reader a keen understanding of applied functional analysis, building progressively from simple background material to the deepest and most significant results. · Introduces each new topic with a clear, concise explanation. · Includes numerous examples linking fundamental principles with applications. · Solidifies the reader's understanding with numerous end-of-chapter problems.

Nonlinear Functional Analysis and Applications provides information pertinent to the fundamental aspects of nonlinear functional analysis and its application. This book provides an introduction to the basic concepts and techniques of this field. Organized into nine chapters, this book begins with an overview of the possibilities for applying ideas from functional analysis to problems in analysis. This text then provides a systematic exposition of several aspects of differential calculus in norms and topological linear spaces. Other chapters consider the various settings in nonlinear functional analysis in which differentials play a significant role. This book discusses as well the generalized inverse for a bounded linear operator, whose range is not necessarily closed. The final chapter deals with the equations of hydrodynamics, which are usually highly nonlinear and difficult to solve. This book is a valuable resource for mathematicians. Readers who are interested in nonlinear functional analysis will also find this book useful.

This textbook is addressed to graduate students in mathematics or other disciplines who wish to understand the essential concepts of functional analysis and their applications to partial differential equations. The book is intentionally concise, presenting all the fundamental concepts and results but omitting the more specialized topics. Enough of the theory of Sobolev spaces and semigroups of linear operators is included as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs. Throughout the book, care has been taken to explain the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra. The main concepts and ideas used in the proofs are illustrated with a large number of figures. A rich collection of homework problems is included at the end of most chapters. The book is suitable as a text for a one-semester graduate course.

Market_Desc: · Undergraduate and Graduate Students in Mathematics and Physics· Engineering· Instructors

The goal of this work is to present the principles of functional analysis in a clear and concise way. The first three chapters of Functional Analysis: Fundamentals and Applications describe the general notions of distance, integral and norm, as well as their relations. The three chapters that follow deal with fundamental examples: Lebesgue spaces, dual spaces and Sobolev spaces. Two subsequent chapters develop applications to capacity theory and elliptic problems. In particular, the isoperimetric inequality and the Pólya-Szegő and Faber-Krahn inequalities are proved by purely functional methods. The epilogue contains a sketch of the history of functional analysis, in relation with integration and differentiation. Starting from elementary analysis and introducing relevant recent research, this work is an excellent resource for students in mathematics and applied mathematics.

This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis.

This book provides the reader with a comprehensive introduction to functional analysis. Topics include normed linear and Hilbert spaces, the Hahn-Banach theorem, the closed graph theorem, the open mapping theorem, linear operator theory, the spectral theory, and a brief introduction to the Lebesgue measure. The book explains the motivation for the development of these theories, and applications that illustrate the theories in action. Applications in optimal control theory, variational problems, wavelet analysis and dynamical systems are also highlighted. ‘A First Course in Functional Analysis’ will serve as a ready reference to students not only of mathematics, but also of allied subjects in applied mathematics, physics, statistics and engineering.

*Proceedings of the Summer Research Institute : the Result of the Thirty-first Summer Research Institute of the American Mathematical Society; Berkeley - Calif., July 11-29, 1983*

**Author**: Felix E. Browder

**Publisher:** American Mathematical Soc.

**ISBN:** 0821814710

**Category:** Mathematics

**Page:** 540

**View:** 6028

Massive compilation offers detailed, in-depth discussions of vector spaces, Hahn-Banach theorem, fixed-point theorems, duality theory, Krein-Milman theorem, theory of compact operators, much more. Many examples and exercises. 32-page bibliography. 1965 edition.

This book reviews topics on the areas of fixed point theory, convex and set-valued analysis, variational inequality and complementarity problem theory, non-linear ergodic theory, difference, differential and integral equations, control and optimisation theory, dynamic system theory, inequality theory, stochastic analysis and probability theory, and their applications.

This advanced level textbook is devoted to the description of systems which show ordered magnetic phases. A wide selection of topics is covered, including a detailed treatment of the mean-field approximation as the main paradigm for the phenomenological description of phase transitions. The book discusses the properties of low-dimensional systems and uses Green's functions extensively after a useful mathematical introduction. A thorough presentation of the RKKY and related models of indirect exchange is also featured, and a chapter on surface magnetism, rarely found in other textbooks, adds to the uniqueness of this book.For the second edition, three new chapters have been added, namely on magnetic anisotropy, on coherent magnon states and on local moments. Additionally, the chapter on itinerant magnetism has been enlarged by including a section on paramagnons.

Principles of Analysis: Measure, Integration, Functional Analysis, and Applications prepares readers taking advanced courses in analysis, probability, harmonic analysis, and applied mathematics at the doctoral level. It is also designed so that the reader or instructor may select topics suitable to their needs. The author presents the text in a clear and straightforward manner for the readers’ benefit. At the same time, the text is a thorough and rigorous examination of the essentials of measure, integration and functional analysis.

A guide to analytic methods in applied mathematics from the perspective of functional analysis, suitable for scientists, engineers and students.

A NATO Advanced Study Institute on Nonlinear Functional Analysis and Its Applications was held in Hotel Villa del Mare, Maratea, It.a1y during April 22 - May 3, 1985. This volume consists of the Proceedings of the Institute. These Proceedings include the invited lectures and contributed papers given during the Institute. The papers have been refereed. The aim of these lectures was to bring together recent and up-to-date development of the subject, and to give directions for future research. The main topics covered include: degree and generalized degree theory, results related to Hamiltonian Systems, Fixed Point theory, linear and nonlinear Differential and Partial Differential Equations, Theory of Nielsen Numbers, and applications to Dynamical Systems, Bifurcation Theory, Hamiltonian Systems, Minimax Theory, Heat Equations, Pendulum Equation, Nonlinear Boundary Value Problems, and Dirichlet and Neumann problems for elliptic equations and the periodic Dirichlet problem for semilinear beam equations. I express my sincere thanks to Professors F. E. Browder, R. Conti, A. Do1d, D. E. Edmunds and J. Mawhin members of the Advisory Committee.

This text offers a rigorous introduction into the theory and methods of convergence spaces and gives concrete applications to the problems of functional analysis. While there are a few books dealing with convergence spaces and a great many on functional analysis, there are none with this particular focus. The book demonstrates the applicability of convergence structures to functional analysis. Highlighted here is the role of continuous convergence, a convergence structure particularly appropriate to function spaces. It is shown to provide an excellent dual structure for both topological groups and topological vector spaces. Readers will find the text rich in examples. Of interest, as well, are the many filter and ultrafilter proofs which often provide a fresh perspective on a well-known result. Audience: This text will be of interest to researchers in functional analysis, analysis and topology as well as anyone already working with convergence spaces. It is appropriate for senior undergraduate or graduate level students with some background in analysis and topology.