Deep Beauty

Understanding the Quantum World through Mathematical Innovation

Author: Hans Halvorson

Publisher: Cambridge University Press


Category: Mathematics


View: 406

No scientific theory has caused more puzzlement and confusion than quantum theory. Physics is supposed to help us to understand the world, but quantum theory makes it seem a very strange place. This book is about how mathematical innovation can help us gain deeper insight into the structure of the physical world. Chapters by top researchers in the mathematical foundations of physics explore new ideas, especially novel mathematical concepts at the cutting edge of future physics. These creative developments in mathematics may catalyze the advances that enable us to understand our current physical theories, especially quantum theory. The authors bring diverse perspectives, unified only by the attempt to introduce fresh concepts that will open up new vistas in our understanding of future physics.

Monoidal Categories and Topological Field Theory

Author: Vladimir Turaev

Publisher: Birkhäuser


Category: Mathematics

Page: 523

View: 909

This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery graph TQFT derived from the center of that category. The book is of interest to researchers and students studying topological field theory, monoidal categories, Hopf algebras and Hopf monads.

Topology and Field Theories

Author: Stephan Stolz

Publisher: American Mathematical Soc.


Category: Mathematics

Page: 176

View: 170

This book is a collection of expository articles based on four lecture series presented during the 2012 Notre Dame Summer School in Topology and Field Theories. The four topics covered in this volume are: Construction of a local conformal field theory associated to a compact Lie group, a level and a Frobenius object in the corresponding fusion category; Field theory interpretation of certain polynomial invariants associated to knots and links; Homotopy theoretic construction of far-reaching generalizations of the topological field theories that Dijkgraf and Witten associated to finite groups; and a discussion of the action of the orthogonal group on the full subcategory of an -category consisting of the fully dualizable objects. The expository style of the articles enables non-experts to understand the basic ideas of this wide range of important topics.

2016 MATRIX Annals

Author: Jan de Gier

Publisher: Springer


Category: Mathematics

Page: 656

View: 282

MATRIX is Australia’s international, residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each lasting 1-4 weeks. This book is a scientific record of the five programs held at MATRIX in its first year, 2016: Higher Structures in Geometry and Physics (Chapters 1-5 and 18-21); Winter of Disconnectedness (Chapter 6 and 22-26); Approximation and Optimisation (Chapters 7-8); Refining C*-Algebraic Invariants for Dynamics using KK-theory (Chapters 9-13); Interactions between Topological Recursion, Modularity, Quantum Invariants and Low-dimensional Topology (Chapters 14-17 and 27). The MATRIX Scientific Committee selected these programs based on their scientific excellence and the participation rate of high-profile international participants. Each program included ample unstructured time to encourage collaborative research; some of the longer programs also included an embedded conference or lecture series. The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on selected topics related to the MATRIX program; the remaining contributions are predominantly lecture notes based on talks or activities at MATRIX.