Finite Difference Equations

Author: Hyman Levy,F. Lessman

Publisher: Courier Corporation

ISBN: 0486672603

Category: Mathematics

Page: 278

View: 9642

Comprehensive study focuses on use of calculus of finite differences as an approximation method for solving troublesome differential equations. Elementary difference operations; interpolation and extrapolation; modes of expansion of the solutions of nonlinear equations, applications of difference equations, difference equations associated with functions of two variables, more. Exercises with answers. 1961 edition.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 5069

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Introduction to Difference Equations

With Illustrative Examples from Economics, Psychology, and Sociology

Author: Samuel Goldberg

Publisher: Courier Corporation

ISBN: 0486650847

Category: Mathematics

Page: 260

View: 8048

Exceptionally clear exposition of an important mathematical discipline and its applications to sociology, economics, and psychology. Topics include calculus of finite differences, difference equations, matrix methods, and more. 1958 edition.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Author: Claes Johnson

Publisher: Courier Corporation

ISBN: 0486131599

Category: Mathematics

Page: 288

View: 1331

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Applied Partial Differential Equations

Author: Paul DuChateau,David Zachmann

Publisher: Courier Corporation

ISBN: 048614187X

Category: Mathematics

Page: 640

View: 5989

DIVBook focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included. /div

Numerical Partial Differential Equations: Finite Difference Methods

Author: J.W. Thomas

Publisher: Springer Science & Business Media

ISBN: 9780387979991

Category: Mathematics

Page: 437

View: 2904

What makes this book stand out from the competition is that it is more computational. Once done with both volumes, readers will have the tools to attack a wider variety of problems than those worked out in the competitors' books. The author stresses the use of technology throughout the text, allowing students to utilize it as much as possible.

Numerical Methods for Partial Differential Equations

An Introduction

Author: Vitoriano Ruas

Publisher: John Wiley & Sons

ISBN: 1119111374

Category: Technology & Engineering

Page: 376

View: 1078

Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.

Partial Differential Equations for Scientists and Engineers

Author: Stanley J. Farlow

Publisher: Courier Corporation

ISBN: 0486134733

Category: Mathematics

Page: 414

View: 2487

Practical text shows how to formulate and solve partial differential equations. Coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, numerical and approximate methods. Solution guide available upon request. 1982 edition.

Ordinary Differential Equations

Author: Morris Tenenbaum,Harry Pollard

Publisher: Courier Corporation

ISBN: 9780486134642

Category: Mathematics

Page: 818

View: 4440

This unusually well-written, skillfully organized introductory text provides an exhaustive survey of ordinary differential equations — equations which express the relationship between variables and their derivatives. In a disarmingly simple, step-by-step style that never sacrifices mathematical rigor, the authors — Morris Tenenbaum of Cornell University, and Harry Pollard of Purdue University — introduce and explain complex, critically-important concepts to undergraduate students of mathematics, engineering and the sciences. The book begins with a section that examines the origin of differential equations, defines basic terms and outlines the general solution of a differential equation-the solution that actually contains every solution of such an equation. Subsequent sections deal with such subjects as: integrating factors; dilution and accretion problems; the algebra of complex numbers; the linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas; and Picard's Method of Successive Approximations. The book contains two exceptional chapters: one on series methods of solving differential equations, the second on numerical methods of solving differential equations. The first includes a discussion of the Legendre Differential Equation, Legendre Functions, Legendre Polynomials, the Bessel Differential Equation, and the Laguerre Differential Equation. Throughout the book, every term is clearly defined and every theorem lucidly and thoroughly analyzed, and there is an admirable balance between the theory of differential equations and their application. An abundance of solved problems and practice exercises enhances the value of Ordinary Differential Equations as a classroom text for undergraduate students and teaching professionals. The book concludes with an in-depth examination of existence and uniqueness theorems about a variety of differential equations, as well as an introduction to the theory of determinants and theorems about Wronskians.

Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev

Publisher: Courier Corporation

ISBN: 9780486659640

Category: Science

Page: 427

View: 9147

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

An Introduction to Differential Equations and Their Applications

Author: Stanley J. Farlow

Publisher: Courier Corporation

ISBN: 0486135136

Category: Mathematics

Page: 640

View: 8456

This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.

Difference Equations

Theory, Applications and Advanced Topics, Third Edition

Author: Ronald E. Mickens

Publisher: CRC Press

ISBN: 1482230798

Category: Mathematics

Page: 555

View: 9142

Difference Equations: Theory, Applications and Advanced Topics, Third Edition provides a broad introduction to the mathematics of difference equations and some of their applications. Many worked examples illustrate how to calculate both exact and approximate solutions to special classes of difference equations. Along with adding several advanced topics, this edition continues to cover general, linear, first-, second-, and n-th order difference equations; nonlinear equations that may be reduced to linear equations; and partial difference equations. New to the Third Edition New chapter on special topics, including discrete Cauchy–Euler equations; gamma, beta, and digamma functions; Lambert W-function; Euler polynomials; functional equations; and exact discretizations of differential equations New chapter on the application of difference equations to complex problems arising in the mathematical modeling of phenomena in engineering and the natural and social sciences Additional problems in all chapters Expanded bibliography to include recently published texts related to the subject of difference equations Suitable for self-study or as the main text for courses on difference equations, this book helps readers understand the fundamental concepts and procedures of difference equations. It uses an informal presentation style, avoiding the minutia of detailed proofs and formal explanations.

Lectures on Ordinary Differential Equations

Author: Witold Hurewicz

Publisher: Courier Corporation

ISBN: 9780486495101

Category: Mathematics

Page: 144

View: 5044

"A rigorous and lively introduction . . . careful and lucid . . ."--The American Mathematical Monthly. Excellent hardcover edition. This concise and idea-rich introduction to a topic of perennial interest in mathematics is written so clearly and lucidly, it is well within the reach of senior mathematics students. It covers mainly existence theorems for first-order scalar and vector equations, basic properties of linear vector equations, and two-dimensional nonlinear autonomous systems. Throughout, the emphasis is on geometric methods. Witold Hurewicz was a world-class mathematician whose untimely death in 1956 deprived the mathematics community of one of its leading lights. His contributions to dimension theory, homotopy and other topics are outlined by Professor Solomon Lefschetz in a prefatory article "Witold Hurewicz in Memoriam" included in this volume. Also included is a list of books on differential equations for those interested in further reading, and a bibliography of Hurewicz's published works. Unabridged Dover republication of the work originally published by MIT Press, 1958. Prefatory article "Witold Hurewicz in Memoriam" by Solomon Lefschetz. List of References. Index. 26 figures.

Abstract Methods in Partial Differential Equations

Author: Robert W. Carroll

Publisher: Courier Corporation

ISBN: 0486263282

Category: Mathematics

Page: 384

View: 6267

Detailed, self-contained treatment examines modern abstract methods in partial differential equations, especially abstract evolution equations. Suitable for graduate students with some previous exposure to classical partial differential equations. 1969 edition.

Elements of Partial Differential Equations

Author: Ian N. Sneddon

Publisher: Courier Corporation

ISBN: 0486162990

Category: Mathematics

Page: 352

View: 3009

This text features numerous worked examples in its presentation of elements from the theory of partial differential equations, emphasizing forms suitable for solving equations. Solutions to odd-numbered problems appear at the end. 1957 edition.

Partial Differential Equations of Mathematical Physics and Integral Equations

Author: Ronald B. Guenther,John W. Lee

Publisher: Courier Corporation

ISBN: 0486137627

Category: Mathematics

Page: 576

View: 1758

Superb treatment for math and physical science students discusses modern mathematical techniques for setting up and analyzing problems. Discusses partial differential equations of the 1st order, elementary modeling, potential theory, parabolic equations, more. 1988 edition.

Introduction to Nonlinear Differential and Integral Equations

Author: Harold Thayer Davis

Publisher: Courier Corporation

ISBN: 9780486609713

Category: Mathematics

Page: 566

View: 7851

Topics covered include differential equations of the 1st order, the Riccati equation and existence theorems, 2nd order equations, elliptic integrals and functions, nonlinear mechanics, nonlinear integral equations, more. Includes 137 problems.

Symmetries and Integrability of Difference Equations

Lecture Notes of the Abecederian School of SIDE 12, Montreal 2016

Author: Decio Levi,Raphaël Rebelo,Pavel Winternitz

Publisher: Springer

ISBN: 3319566660

Category: Science

Page: 435

View: 1208

This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.