Exploring Mathematics

An Engaging Introduction to Proof

Author: John Meier,Derek Smith

Publisher: Cambridge University Press

ISBN: 1107128986

Category: Mathematics

Page: 300

View: 6045

Exploring Mathematics gives students experience with doing mathematics - interrogating mathematical claims, exploring definitions, forming conjectures, attempting proofs, and presenting results - and engages them with examples, exercises, and projects that pique their interest. Written with a minimal number of pre-requisites, this text can be used by college students in their first and second years of study, and by independent readers who want an accessible introduction to theoretical mathematics. Core topics include proof techniques, sets, functions, relations, and cardinality, with selected additional topics that provide many possibilities for further exploration. With a problem-based approach to investigating the material, students develop interesting examples and theorems through numerous exercises and projects. In-text exercises, with complete solutions or robust hints included in an appendix, help students explore and master the topics being presented. The end-of-chapter exercises and projects provide students with opportunities to confirm their understanding of core material, learn new concepts, and develop mathematical creativity.

A Logical Introduction to Proof

Author: Daniel W. Cunningham

Publisher: Springer Science & Business Media

ISBN: 1461436311

Category: Mathematics

Page: 356

View: 1844

The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.

Continuous Symmetry

From Euclid to Klein

Author: William H. Barker,Roger Howe

Publisher: American Mathematical Soc.

ISBN: 0821839004

Category: Mathematics

Page: 546

View: 9745

The fundamental idea of geometry is that of symmetry. With that principle as the starting point, Barker and Howe begin an insightful and rewarding study of Euclidean geometry. The primary focus of the book is on transformations of the plane. The transformational point of view provides both a path for deeper understanding of traditional synthetic geometry and tools for providing proofs that spring from a consistent point of view. As a result, proofs become more comprehensible, as techniques can be used and reused in similar settings. The approach to the material is very concrete, with complete explanations of all the important ideas, including foundational background. The discussions of the nine-point circle and wallpaper groups are particular examples of how the strength of the transformational point of view and the care of the authors' exposition combine to give a remarkable presentation of topics in geometry. This text is for a one-semester undergraduate course on geometry. It is richly illustrated and contains hundreds of exercises.

An Introduction to Proof Through Real Analysis

Author: Daniel J. Madden,Jason A. Aubrey

Publisher: John Wiley & Sons

ISBN: 1119314720

Category: Education

Page: 448

View: 3403

An engaging and accessible introduction to mathematical proof incorporating ideas from real analysis A mathematical proof is an inferential argument for a mathematical statement. Since the time of the ancient Greek mathematicians, the proof has been a cornerstone of the science of mathematics. The goal of this book is to help students learn to follow and understand the function and structure of mathematical proof and to produce proofs of their own. An Introduction to Proof through Real Analysis is based on course material developed and refined over thirty years by Professor Daniel J. Madden and was designed to function as a complete text for both first proofs and first analysis courses. Written in an engaging and accessible narrative style, this book systematically covers the basic techniques of proof writing, beginning with real numbers and progressing to logic, set theory, topology, and continuity. The book proceeds from natural numbers to rational numbers in a familiar way, and justifies the need for a rigorous definition of real numbers. The mathematical climax of the story it tells is the Intermediate Value Theorem, which justifies the notion that the real numbers are sufficient for solving all geometric problems. • Concentrates solely on designing proofs by placing instruction on proof writing on top of discussions of specific mathematical subjects • Departs from traditional guides to proofs by incorporating elements of both real analysis and algebraic representation • Written in an engaging narrative style to tell the story of proof and its meaning, function, and construction • Uses a particular mathematical idea as the focus of each type of proof presented • Developed from material that has been class-tested and fine-tuned over thirty years in university introductory courses An Introduction to Proof through Real Analysis is the ideal introductory text to proofs for second and third-year undergraduate mathematics students, especially those who have completed a calculus sequence, students learning real analysis for the first time, and those learning proofs for the first time. Daniel J. Madden, PhD, is an Associate Professor of Mathematics at The University of Arizona, Tucson, Arizona, USA. He has taught a junior level course introducing students to the idea of a rigorous proof based on real analysis almost every semester since 1990. Dr. Madden is the winner of the 2015 Southwest Section of the Mathematical Association of America Distinguished Teacher Award. Jason A. Aubrey, PhD, is Assistant Professor of Mathematics and Director, Mathematics Center of the University of Arizona.

Basic Discrete Mathematics

Logic, Set Theory, and Probability

Author: Richard Kohar

Publisher: World Scientific Publishing Company

ISBN: 9814730416

Category: Mathematics

Page: 732

View: 9092

This lively introductory text exposes the student in the humanities to the world of discrete mathematics. A problem-solving based approach grounded in the ideas of George Pólya are at the heart of this book. Students learn to handle and solve new problems on their own. A straightforward, clear writing style and well-crafted examples with diagrams invite the students to develop into precise and critical thinkers. Particular attention has been given to the material that some students find challenging, such as proofs. This book illustrates how to spot invalid arguments, to enumerate possibilities, and to construct probabilities. It also presents case studies to students about the possible detrimental effects of ignoring these basic principles. The book is invaluable for a discrete and finite mathematics course at the freshman undergraduate level or for self-study since there are full solutions to the exercises in an appendix. "Written with clarity, humor and relevant real-world examples, Basic Discrete Mathematics is a wonderful introduction to discrete mathematical reasoning."- Arthur Benjamin, Professor of Mathematics at Harvey Mudd College, and author of The Magic of Math

Introduction to Probability

Author: David F. Anderson,Timo Seppäläinen,Benedek Valkó

Publisher: Cambridge University Press

ISBN: 110824498X

Category: Mathematics

Page: N.A

View: 6538

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Chance, Strategy, and Choice

An Introduction to the Mathematics of Games and Elections

Author: Samuel Bruce Smith

Publisher: Cambridge University Press

ISBN: 1316033708

Category: Mathematics

Page: N.A

View: 1846

Games and elections are fundamental activities in society with applications in economics, political science, and sociology. These topics offer familiar, current, and lively subjects for a course in mathematics. This classroom-tested textbook, primarily intended for a general education course in game theory at the freshman or sophomore level, provides an elementary treatment of games and elections. Starting with basics such as gambling, zero-sum and combinatorial games, Nash equilibria, social dilemmas, and fairness and impossibility theorems for elections, the text then goes further into the theory with accessible proofs of advanced topics such as the Sprague–Grundy theorem and Arrow's impossibility theorem. • Uses an integrative approach to probability, game, and social choice theory • Provides a gentle introduction to the logic of mathematical proof, thus equipping readers with the necessary tools for further mathematical studies • Contains numerous exercises and examples of varying levels of difficulty • Requires only a high school mathematical background.

Yet Another Introduction to Analysis

Author: Victor Bryant

Publisher: Cambridge University Press

ISBN: 1107717221

Category: Mathematics

Page: 298

View: 3624

Mathematics education in schools has seen a revolution in recent years. Students everywhere expect the subject to be well-motivated, relevant and practical. When such students reach higher education the traditional development of analysis, often rather divorced from the calculus which they learnt at school, seems highly inappropriate. Shouldn't every step in a first course in analysis arise naturally from the student's experience of functions and calculus at school? And shouldn't such a course take every opportunity to endorse and extend the student's basic knowledge of functions? In Yet Another Introduction to Analysis the author steers a simple and well-motivated path through the central ideas of real analysis. Each concept is introduced only after its need has become clear and after it has already been used informally. Wherever appropriate the new ideas are related to school topics and are used to extend the reader's understanding of those topics. A first course in analysis at college is always regarded as one of the hardest in the curriculum. However, in this book the reader is led carefully through every step in such a way that he/she will soon be predicting the next step for him/herself. In this way the subject is developed naturally: students will end up not only understanding analysis, but also enjoying it.

Understanding Mathematical Proof

Author: John Taylor,Rowan Garnier

Publisher: CRC Press

ISBN: 1466514914

Category: Mathematics

Page: 414

View: 8358

The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs. Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techniques that mathematicians adopt to prove their results, and offers advice and strategies for constructing proofs. It will improve students’ ability to understand proofs and construct correct proofs of their own. The first chapter of the text introduces the kind of reasoning that mathematicians use when writing their proofs and gives some example proofs to set the scene. The book then describes basic logic to enable an understanding of the structure of both individual mathematical statements and whole mathematical proofs. It also explains the notions of sets and functions and dissects several proofs with a view to exposing some of the underlying features common to most mathematical proofs. The remainder of the book delves further into different types of proof, including direct proof, proof using contrapositive, proof by contradiction, and mathematical induction. The authors also discuss existence and uniqueness proofs and the role of counter examples.

The Nuts and Bolts of Proofs

An Introduction to Mathematical Proofs

Author: Antonella Cupillari

Publisher: Academic Press

ISBN: 0123822181

Category: Mathematics

Page: 296

View: 1773

The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs provides basic logic of mathematical proofs and shows how mathematical proofs work. It offers techniques for both reading and writing proofs. The second chapter of the book discusses the techniques in proving if/then statements by contrapositive and proofing by contradiction. It also includes the negation statement, and/or. It examines various theorems, such as the if and only-if, or equivalence theorems, the existence theorems, and the uniqueness theorems. In addition, use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are covered in this chapter. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book invaluable. Jumps right in with the needed vocabulary—gets students thinking like mathematicians from the beginning Offers a large variety of examples and problems with solutions for students to work through on their own Includes a collection of exercises without solutions to help instructors prepare assignments Contains an extensive list of basic mathematical definitions and concepts needed in abstract mathematics

Conceptual Mathematics

A First Introduction to Categories

Author: F. William Lawvere,Stephen H. Schanuel

Publisher: Cambridge University Press

ISBN: 0521894859

Category: Mathematics

Page: 390

View: 1284

In the last 60 years, the use of the notion of category has led to a remarkable unification and simplification of mathematics. Conceptual Mathematics introduces this tool for the learning, development, and use of mathematics, to beginning students and also to practising mathematical scientists. This book provides a skeleton key that makes explicit some concepts and procedures that are common to all branches of pure and applied mathematics. The treatment does not presuppose knowledge of specific fields, but rather develops, from basic definitions, such elementary categories as discrete dynamical systems and directed graphs; the fundamental ideas are then illuminated by examples in these categories. This second edition provides links with more advanced topics of possible study. In the new appendices and annotated bibliography the reader will find concise introductions to adjoint functors and geometrical structures, as well as sketches of relevant historical developments.

An Introduction to Mathematical Reasoning

Author: Peter J. Eccles

Publisher: Cambridge University Press

ISBN: 9780521597180

Category: Mathematics

Page: 350

View: 3761

This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.

Sets of Finite Perimeter and Geometric Variational Problems

An Introduction to Geometric Measure Theory

Author: Francesco Maggi

Publisher: Cambridge University Press

ISBN: 1139560891

Category: Mathematics

Page: N.A

View: 4084

The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.

Classic Set Theory

For Guided Independent Study

Author: D.C. Goldrei

Publisher: Routledge

ISBN: 1351460609

Category: Mathematics

Page: 296

View: 1304

Designed for undergraduate students of set theory, Classic Set Theory presents a modern perspective of the classic work of Georg Cantor and Richard Dedekin and their immediate successors. This includes:The definition of the real numbers in terms of rational numbers and ultimately in terms of natural numbersDefining natural numbers in terms of setsThe potential paradoxes in set theoryThe Zermelo-Fraenkel axioms for set theoryThe axiom of choiceThe arithmetic of ordered setsCantor's two sorts of transfinite number - cardinals and ordinals - and the arithmetic of these.The book is designed for students studying on their own, without access to lecturers and other reading, along the lines of the internationally renowned courses produced by the Open University. There are thus a large number of exercises within the main body of the text designed to help students engage with the subject, many of which have full teaching solutions. In addition, there are a number of exercises without answers so students studying under the guidance of a tutor may be assessed.Classic Set Theory gives students sufficient grounding in a rigorous approach to the revolutionary results of set theory as well as pleasure in being able to tackle significant problems that arise from the theory.

Introduction to Lattices and Order

Author: B. A. Davey,H. A. Priestley

Publisher: Cambridge University Press

ISBN: 1107717523

Category: Mathematics

Page: 309

View: 5767

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

An Introduction to Gödel's Theorems

Author: Peter Smith

Publisher: Cambridge University Press

ISBN: 1107022843

Category: Mathematics

Page: 406

View: 5555

A clear and accessible treatment of Gödel's famous, intriguing, but much misunderstood incompleteness theorems, extensively revised in a second edition.

Pattern Formation

An Introduction to Methods

Author: Rebecca B. Hoyle

Publisher: Cambridge University Press

ISBN: 9780521817509

Category: Mathematics

Page: 422

View: 3266

Fully illustrated mathematical guide to pattern formation. Includes instructive exercises and examples.

Probability: A Lively Introduction

Author: Henk Tijms

Publisher: Cambridge University Press

ISBN: 1108418740

Category: Mathematics

Page: N.A

View: 617

Comprehensive, yet concise, this textbook is the go-to guide to learn why probability is so important and its applications.

You are a mathematician

a wise and witty introduction to the joy of numbers

Author: David G. Wells

Publisher: John Wiley & Sons Inc

ISBN: N.A

Category: Mathematics

Page: 424

View: 6941

A guide to the potential and pleasures of math explores the patterns and properties associated with numbers, reveals the origins of mathematical theories and principles, and includes more than one hundred mathematical puzzles

Mathematics

Author: Timothy Gowers

Publisher: Sterling Publishing Company, Inc.

ISBN: 9781402768972

Category: Mathematics

Page: 180

View: 2820

Mathematics is a subject we are all exposed to in our daily lives, but one that many of us fear. Timothy Gowers’s entertaining overview of the topic explains the differences between what we learn at school and advanced mathematics, and helps the math phobic emerge with a clearer understanding of such paradoxical-sounding concepts as “infinity,” “curved space,” and “imaginary numbers.” From basic ideas to philosophical queries to common sociological questions about the mathematical community, this book unravels the mysteries of space and numbers.