Exploring Mathematics

An Engaging Introduction to Proof

Author: John Meier,Derek Smith

Publisher: Cambridge University Press

ISBN: 1107128986

Category: Mathematics

Page: 300

View: 5814

Exploring Mathematics gives students experience with doing mathematics - interrogating mathematical claims, exploring definitions, forming conjectures, attempting proofs, and presenting results - and engages them with examples, exercises, and projects that pique their interest. Written with a minimal number of pre-requisites, this text can be used by college students in their first and second years of study, and by independent readers who want an accessible introduction to theoretical mathematics. Core topics include proof techniques, sets, functions, relations, and cardinality, with selected additional topics that provide many possibilities for further exploration. With a problem-based approach to investigating the material, students develop interesting examples and theorems through numerous exercises and projects. In-text exercises, with complete solutions or robust hints included in an appendix, help students explore and master the topics being presented. The end-of-chapter exercises and projects provide students with opportunities to confirm their understanding of core material, learn new concepts, and develop mathematical creativity.

Introduction to Probability

Author: David F. Anderson,Timo Seppäläinen,Benedek Valkó

Publisher: Cambridge University Press

ISBN: 110824498X

Category: Mathematics

Page: N.A

View: 2747

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Algorithmen - Eine Einführung

Author: Thomas H. Cormen,Charles E. Leiserson,Ronald Rivest,Clifford Stein

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110522012

Category: Computers

Page: 1339

View: 9857

Der "Cormen" bietet eine umfassende und vielseitige Einführung in das moderne Studium von Algorithmen. Es stellt viele Algorithmen Schritt für Schritt vor, behandelt sie detailliert und macht deren Entwurf und deren Analyse allen Leserschichten zugänglich. Sorgfältige Erklärungen zur notwendigen Mathematik helfen, die Analyse der Algorithmen zu verstehen. Den Autoren ist es dabei geglückt, Erklärungen elementar zu halten, ohne auf Tiefe oder mathematische Exaktheit zu verzichten. Jedes der weitgehend eigenständig gestalteten Kapitel stellt einen Algorithmus, eine Entwurfstechnik, ein Anwendungsgebiet oder ein verwandtes Thema vor. Algorithmen werden beschrieben und in Pseudocode entworfen, der für jeden lesbar sein sollte, der schon selbst ein wenig programmiert hat. Zahlreiche Abbildungen verdeutlichen, wie die Algorithmen arbeiten. Ebenfalls angesprochen werden Belange der Implementierung und andere technische Fragen, wobei, da Effizienz als Entwurfskriterium betont wird, die Ausführungen eine sorgfältige Analyse der Laufzeiten der Programme mit ein schließen. Über 1000 Übungen und Problemstellungen und ein umfangreiches Quellen- und Literaturverzeichnis komplettieren das Lehrbuch, dass durch das ganze Studium, aber auch noch danach als mathematisches Nachschlagewerk oder als technisches Handbuch nützlich ist. Für die dritte Auflage wurde das gesamte Buch aktualisiert. Die Änderungen sind vielfältig und umfassen insbesondere neue Kapitel, überarbeiteten Pseudocode, didaktische Verbesserungen und einen lebhafteren Schreibstil. So wurden etwa - neue Kapitel zu van-Emde-Boas-Bäume und mehrfädigen (engl.: multithreaded) Algorithmen aufgenommen, - das Kapitel zu Rekursionsgleichungen überarbeitet, sodass es nunmehr die Teile-und-Beherrsche-Methode besser abdeckt, - die Betrachtungen zu dynamischer Programmierung und Greedy-Algorithmen überarbeitet; Memoisation und der Begriff des Teilproblem-Graphen als eine Möglichkeit, die Laufzeit eines auf dynamischer Programmierung beruhender Algorithmus zu verstehen, werden eingeführt. - 100 neue Übungsaufgaben und 28 neue Problemstellungen ergänzt. Umfangreiches Dozentenmaterial (auf englisch) ist über die Website des US-Verlags verfügbar.

Linear Algebra

Author: Elizabeth S. Meckes,Mark W. Meckes

Publisher: Cambridge University Press

ISBN: 1316836029

Category: Mathematics

Page: N.A

View: 835

Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.

Mathematik und plausibles Schliessen

Band 1 Induktion und Analogie in der Mathematik

Author: G. Polya

Publisher: Springer-Verlag

ISBN: 3034891660

Category: Juvenile Nonfiction

Page: 404

View: 8730

Eine kleine Geschichte der Unendlichkeit

Author: Brian Clegg

Publisher: Rowohlt Verlag GmbH

ISBN: 364404371X

Category: Fiction

Page: 352

View: 2633

Philosophen und Mathematiker hat das Nachsinnen über das Wesen des Unendlichen buchstäblich den Verstand geraubt – und dennoch ist es ein Konzept, das immer wieder unser Leben bestimmt. In diesem mit Anekdoten und Geschichten gespickten Buch nimmt uns Brian Clegg mit auf eine Reise durch das Grenzland zwischen dem extrem Großen und dem Ultimativen, von Archimedes, der die Zahl der Sandkörner bestimmte, die das Universum füllen würden, bis zu den neuesten Theorien über die physikalische Realität des Unendlichen.

The Joy of x

Die Schönheit der Mathematik

Author: Steven Strogatz

Publisher: Kein & Aber AG

ISBN: 3036992693

Category: Mathematics

Page: 352

View: 1239

Mathematik durchdringt den ganzen Kosmos. Das weiß jeder, doch nur die wenigsten verstehen die Zusammenhänge wirklich. Steven Strogatz nimmt uns bei der Hand und spaziert mit uns durch diese Welt der Weisheit, Klarheit und Eleganz. Als Reiseleiter geht er neue, erfrischende Wege, deutet auf Besonderheiten, schildert Hintergründe und erklärt die unsichtbaren Mechanismen. Wir erfahren unter anderem von dem Wunder des Zählens, der genialen Einfachheit der Algebra, dem ewigen Erbe Newtons, dem Tango mit Quadraten, der Zweisamkeit von Primzahlen und der Macht des Unendlichen. Mit all seiner Begeisterung, seinem Scharfblick und seinem leichtem Ton hat Steven Strogatz ein herrliches Buch für alle geschrieben, die ihr Verständnis von Mathematik auf eine neue Art vertiefen möchten.

Schule des Denkens

vom Lösen mathematischer Probleme

Author: George Pólya

Publisher: N.A

ISBN: 9783772006081

Category:

Page: 266

View: 7527

Professor Stewarts mathematische Schätze

Author: Ian Stewart

Publisher: Rowohlt Verlag GmbH

ISBN: 3644017115

Category: Mathematics

Page: 432

View: 5776

Was war noch mal die Catalan’sche Vermutung? Und woher kommt eigentlich das Wurzelsymbol? Was hat die Zahl Pi mit dem Sternenhimmel zu tun? Wer erfand das Gleichheitszeichen? Der britische Matheguru Ian Stewart breitet in diesem Band Schätze aus, die er in Jahrzehnten gesammelt hat: über 180 interessante Matherätsel, Lösungen, Spiele, Tricks, Geschichten, Anekdoten und Logeleien. Zudem ist Stewarts Schatztruhe mit interessanten historischen Exkursen angereichert, zum Beispiel einer kurzen Einführung in das Rechnen der Maya und der alten Ägypter und auch in die Vergangenheit unseres eigenen Rechnens: Wer erfand das Gleichheitszeichen – und warum? Ein Buch zum Blättern und Stöbern, zum Spaßhaben und Dazulernen, für Laien und für Fortgeschrittene.

Beweise und Widerlegungen

Die Logik mathematischer Entdeckungen

Author: Imre Lakatos

Publisher: Springer-Verlag

ISBN: 3663001962

Category: Mathematics

Page: 163

View: 7213

Der Gödelsche Beweis

Author: Ernest Nagel,James R. Newman

Publisher: de Gruyter Oldenbourg

ISBN: 9783486597264

Category:

Page: 110

View: 7974

Spätestens seit Douglas R. Hofstadters "Gödel, Escher, Bach" ist der Name Gödel auch bei Nichtmathematikern bekannt geworden. 1931 hatte Kurt Gödel unter dem Titel "Über formal unterscheidbare Sätze der Principia Mathematica und verwandter Systeme" seinen Unvollständigkeitssatz publiziert. Nagel und Newman haben das Wesentliche an Gödels Ergebnissen für Nichtfachleute dargestellt. Die vorliegende 9. Auflage ist ein unveränderter Nachdruck der längst klassisch gewordenen Ausgabe von 1958.

Alex im Wunderland der Zahlen

Eine Reise durch die aufregende Welt der Mathematik

Author: Alex Bellos

Publisher: eBook Berlin Verlag

ISBN: 3827078083

Category: Mathematics

Page: 480

View: 9552

Erinnern wir uns nicht alle mit Schrecken an die ratlosen Momente vor der Tafel im Matheunterricht? Mit Kurvendiskussionen und Dreisatz dürften jedenfalls nur wenige Spaß und Spannung verbinden... Bis jetzt! Denn nun wagt sich Alex Bellos in den Kaninchenbau der Mathematik: in das Reich von Geometrie und Algebra, von Wahrscheinlichkeitsrechnung, Statistik und logischen Paradoxa. Auf der anderen Seite des Erdballs, am Amazonas, zählen die Mitglieder des Indianerstammes der Munduruku nur bis fünf und halten die Vorstellung, dass dies nicht genügen solle, für reichlich lächerlich. Bei uns in Deutschland dagegen finden jährlich die Meisterschaften der besten Kopfrechner der Welt statt - 2010 wurde in Magdeburg eine elfjährige Inderin zur Nummer eins unter den "Mathleten" gekürt. Die Mathe-Weltmeisterin unter den Tieren ist hingegen die Schimpansin Ai, die Alex Bellos im japanischen Inuyama aufspürt und über deren Rechenkünste er nur staunen kann. Auch wenn er von den bahnbrechenden Überlegungen Euklids erzählt oder erklärt, warum man in Japan seine Visitenkarten keinesfalls zu Dodekaedern falten sollte - Bellos führt uns durch das wahrhaft erstaunliche Reich der Zahlen und bringt uns eine komplexe Wissenschaft spielerisch nahe. Mit seiner Mischung aus spannender Reportage, Wissenschaftsgeschichte und mathematischen Kabinettstückchen erbringt er souverän den Beweis, dass die Gleichung Mathematik = Langeweile eindeutig nicht wahr ist. Quod erat demonstrandum.

Der Zahlensinn oder Warum wir rechnen können

Author: Stanislas Dehaene

Publisher: Springer-Verlag

ISBN: 3034878257

Category: Science

Page: 311

View: 2599

Wir sind umgeben von Zahlen. Ob auf Kreditkarten gestanzt oder auf Münzen geprägt, ob auf Schecks gedruckt oder in den Spalten computerisierter Tabellen aufgelistet, überall beherrschen Zahlen unser Leben. Sie sind auch der Kern unserer Technologie. Ohne Zahlen könnten wir weder Raketen starten, die das Sonnensystem erkunden, noch Brücken bauen, Güter austauschen oder Rech nungen bezahlen. In gewissem Sinn sind Zahlen also kulturelle Erfindungen, die sich ihrer Bedeutung nach nur mit der Landwirtschaft oder mit dem Rad vergleichen lassen. Aber sie könnten sogar noch tiefere Wurzeln haben. Tausende von Jahren vor Christus benutzten babylonische Wissenschaftler Zahlzeichen, um erstaun lich genaueastronomische Tabellen zu berechnen. Zehntausende von Jahren zuvor hatten Menschen der Steinzeit die ersten geschriebenen Zahlenreihen geschaffen, indem sie Knochen einkerbten oder Punkte auf Höhlenwände malten. Und, wie ich später überzeugend darzustellen hoffe, schon vor weiteren Millionen von Jahren, lange bevor es Menschen gab, nahmen Tiere aller Arten Zahlen zur Kenntnis und stellten mit ihnen einfache Kopfrechnungen an. Sind Zahlen also fast so alt wie das Leben selbst? Sind sie in der Struktur unseres Gehirns verankert? Besitzen wir einen Zahlensinn, eine spezielle Intuition, die uns hilft, Zahlen und Mathematik mit Sinn zu erfüllen? Ich wurde vor fünfzehn Jahren, während meiner Ausbildung zum Mathema tiker, fasziniert von den abstrakten Objekten, mit denen ich umzugehen lernte, vor allem von den einfachsten von ihnen- den Zahlen.

GAMMA

Eulers Konstante, Primzahlstrände und die Riemannsche Vermutung

Author: Julian Havil

Publisher: Springer-Verlag

ISBN: 3540484965

Category: Mathematics

Page: 302

View: 768

Jeder kennt p = 3,14159..., viele kennen e = 2,71828..., einige i. Und dann? Die "viertwichtigste" Konstante ist die Eulersche Zahl g = 0,5772156... - benannt nach dem genialen Leonhard Euler (1707-1783). Bis heute ist unbekannt, ob g eine rationale Zahl ist. Das Buch lotet die "obskure" Konstante aus. Die Reise beginnt mit Logarithmen und der harmonischen Reihe. Es folgen Zeta-Funktionen und Eulers wunderbare Identität, Bernoulli-Zahlen, Madelungsche Konstanten, Fettfinger in Wörterbüchern, elende mathematische Würmer und Jeeps in der Wüste. Besser kann man nicht über Mathematik schreiben. Was Julian Havil dazu zu sagen hat, ist spektakulär.

1089 oder das Wunder der Zahlen

eine Reise in die Welt der Mathematik

Author: David J. Acheson

Publisher: N.A

ISBN: 9783866470200

Category:

Page: 189

View: 2156

Das Buch beginnt mit einem alten Zaubertrick - Man nehme eine 3-stellige Zahl, etwa 782, kehre sie um, ziehe die kleinere von der größeren ab und addiere dazu die Umkehrung. Also - 782 - 287 = 495, dann 495 + 594. Und schon ist man mitten in der Wunderwelt der Mathematik, denn das Ergebnis ist immer - 1089. Mit solchen und vielen weiteren Beispielen aus Alltag, Geschichte und Wissenschaft gelingt es David Acheson, die faszinierende Welt der Mathematik zu erschließen - ein geistreicher Überblick, eine für jeden verständliche Einführung.

Diskrete Mathematik

Author: Martin Aigner

Publisher: Springer-Verlag

ISBN: 3322854965

Category: Mathematics

Page: 318

View: 1458

Vor 50 Jahren gab es den Begriff "Diskrete Mathematik" nicht, und er ist auch heute im deutschen Sprachraum keineswegs gebrauchlich. Vorlesungen dazu werden nicht iiberall und schon gar nicht mit einem einheitlichen Themenkatalog angeboten (im Gegensatz zum Beispiel zu den USA, wo sie seit langem einen festen Platz haben). Die Mathematiker verstehen unter Diskreter Mathematik meist Kombinatorik oder Graphentheorie, die Informatiker Diskrete Strukturen oder Boolesche Algebren. Das Hauptanliegen dieses Buches ist daher, solch einen Themenkatalog zu prasentieren, der alle Grundlagen fiir ein weiterfiihrendes Studium enthalt. Die Diskrete Mathematik beschaftigt sich vor allem mit endlichen Mengen. Was kann man in endlichen Mengen studieren? Ais allererstes kann man sie abzahlen, dies ist das klassische Thema der Kombinatorik - in Teil I werden wir die wich tigsten Ideen und Methoden zur Abzahlung kennenlernen. Auf endlichen Mengen ist je nach Aufgabenstellung meist eine einfache Struktur in Form von Relationen gegeben, von denen die anwendungsreichsten die Graphen sind. Diese Aspekte fas sen wir in Teil II unter dem Titel Graphen uncl Algorithmen zusammen. Und schlieBlich existiert auf endlichen Mengen oft eine algebraische Struktur (oder man kann eine solche auf natiirliche Weise erklaren). Algebraische Systeme sind der Inhalt von Teil III. Diese drei Gesichtspunkte bilden den roten Faden des Buches. Ein weiterer Aspekt, der die Darstellung durchgehend pragt, betrifft den Begriff der Optimierung.