Euclidean Geometry

A Guided Inquiry Approach

Author: David M. Clark

Publisher: American Mathematical Soc.


Category: Mathematics

Page: 127

View: 948

Geometry has been an essential element in the study of mathematics since antiquity. Traditionally, we have also learned formal reasoning by studying Euclidean geometry. In this book, David Clark develops a modern axiomatic approach to this ancient subject, both in content and presentation. Mathematically, Clark has chosen a new set of axioms that draw on a modern understanding of set theory and logic, the real number continuum and measure theory, none of which were available in Euclid's time. The result is a development of the standard content of Euclidean geometry with the mathematical precision of Hilbert's foundations of geometry. In particular, the book covers all the topics listed in the Common Core State Standards for high school synthetic geometry. The presentation uses a guided inquiry, active learning pedagogy. Students benefit from the axiomatic development because they themselves solve the problems and prove the theorems with the instructor serving as a guide and mentor. Students are thereby empowered with the knowledge that they can solve problems on their own without reference to authority. This book, written for an undergraduate axiomatic geometry course, is particularly well suited for future secondary school teachers. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.

Two-Dimensional Geometries: A Problem-Solving Approach

Author: C. Herbert Clemens

Publisher: American Mathematical Soc.


Category: Geometry, Descriptive

Page: 142

View: 859

This book on two-dimensional geometry uses a problem-solving approach to actively engage students in the learning process. The aim is to guide readers through the story of the subject, while giving them room to discover and partially construct the story themselves. The book bridges the study of plane geometry and the study of curves and surfaces of non-constant curvature in three-dimensional Euclidean space. One useful feature is that the book can be adapted to suit different audiences. The first half of the text covers plane geometry without and with Euclid's Fifth Postulate, followed by a brief synthetic treatment of spherical geometry through the excess angle formula. This part only requires a background in high school geometry and basic trigonometry and is suitable for a quarter course for future high school geometry teachers. A brief foray into the second half could complete a semester course. The second half of the text gives a uniform treatment of all the complete, simply connected, two-dimensional geometries of constant curvature, one geometry for each real number (its curvature), including their groups of isometries, geodesics, measures of lengths and areas, as well as formulas for areas of regions bounded by polygons in terms of the curvature of the geometry and the sum of the interior angles of the polygon. A basic knowledge of real linear algebra and calculus of several (real) variables is useful background for this portion of the text.