Essentials of Neurophysiology

Basic Concepts and Clinical Applications for Scientists and Engineers

Author: M.J.A.M. van Putten

Publisher: Springer

ISBN: 9783642089343

Category: Technology & Engineering

Page: 231

View: 1893

In this book, we approach neurophysiology at the interface of neurology and clinical neurophysiology. The medical disciplines of the nervous system, n- rology and clinical neurophysiology, rest heavily on other sciences, notably cellular biology, neuro-anatomy, neuro-physiology, applied physics and ma- ematical biology. Existing medical textbooks on neurophysiology, neurology and clinical neurophysiology are an excellent source of the phenomenology of various principles and diseases. Here, we choose to elucidate some of the under- ing physiological, physical processes and experimental methods, intended for a broad audience – medical residents and students, as well as students in the emerging area of medical technical sciences. We feel that a good understanding of fundamentals may signi?cantly - hance insight into various aspects of clinical neurology and clinical neu- physiology. This book, therefore, is focused on a selection of clinical signs and symptoms to highlight basic principles of neurology, (neuro-)physiology and neuroanatomy. While we believe this text to be of interest to medical students or residents in neurology or clinical neurophysiology, we speci?cally aim at students - terested in contributing to new developments and innovations in neurology and clinical neurophysiology. These students are involved with patients, even though they are not trained for routine patient care.

Oxford Textbook of Clinical Neurophysiology

Author: Kerry R. Mills,Professor of Clinical Neurophysiology Kerry R Mills

Publisher: Oxford University Press

ISBN: 0199688397

Category:

Page: 512

View: 4438

Part of the Oxford Textbooks in Clinical Neurology series, the Oxford Textbook of Clinical Neurophysiology includes sections that provide a summary of the basic science underlying neurophysiological techniques, a description of the techniques themselves, including normal values, and a description of the use of the techniques in clinical situations. Much of diagnostic neurophysiology is essentially pattern recognition which is illustrated throughout the text using audio and video examples. Divided into four key sections, this book begins with the scientific basis of clinical neurophysiology (Section 1) before exploring specific techniques including Electromyography, Intracranial EEG recordings, and Magnetoencephalography (Section 2). The final two sections explore clinical aspects of both the peripheral nervous system (Section 3) and the central nervous system (Section 4).

Physiology for Engineers

Applying Engineering Methods to Physiological Systems

Author: Michael Chappell,Stephen Payne

Publisher: Springer

ISBN: 3319261975

Category: Technology & Engineering

Page: 167

View: 7149

This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reaction kinetics, pharmacokinetic modelling and tracer kinetics. It is of interest to final year biomedical engineering undergraduates and graduate students alike, as well as to practising engineers new to the fields of bioengineering or medical physics.

Quantitative Human Physiology

An Introduction

Author: Joseph J Feher

Publisher: Academic Press

ISBN: 0123821649

Category: Science

Page: 960

View: 8708

Quantitative Human Physiology: An Introduction presents a course in quantitative physiology developed for undergraduate students of Biomedical Engineering at Virginia Commonwealth University. The text covers all the elements of physiology in nine units: (1) physical and chemical foundations; (2) cell physiology; (3) excitable tissue physiology; (4) neurophysiology; (5) cardiovascular physiology; (6) respiratory physiology; (7) renal physiology; (8) gastrointestinal physiology; and (9) endocrinology. The text makes extensive use of mathematics at the level of calculus and elementary differential equations. Examples and problem sets are provided to facilitate quantitative and analytic understanding, while the clinical applications scattered throughout the text illustrate the rationale behind the topics discussed. This text is written for students with no knowledge of physiology but with a solid background in calculus with elementary differential equations. The text is also useful for instructors with less time; each chapter is intended to be a single lecture and can be read in a single sitting. A quantitative approach that includes physical and chemical principles An integrated approach from first principles, integrating anatomy, molecular biology, biochemistry and physiology. Illustration program reinforces the integrated nature of physiological systems Pedagogically rich, including chapter objectives, chapter summaries, large number of illustrations, and short chapters suitable for single lectures Clinical applications relevant to the biomedical engineering student (TENS, cochlear implants, blood substitutes, etc.) Problem sets provide opportunity for practice and assessment throughout the course.

Applied Cell and Molecular Biology for Engineers

Author: Gabi Nindl Waite,Lee Waite

Publisher: McGraw Hill Professional

ISBN: 9780071509527

Category: Technology & Engineering

Page: 326

View: 6667

A Guide to the Fundamentals and Latest Concepts of Molecular and Cell Biology Bridging the gap between biology and engineering, Applied Cell and Molecular Biology for Engineers uses clear, straightforward language to introduce you to the cutting-edge concepts of molecular and cell biology. Written by an international team of engineers and life scientists, this vital tool contains “clinical focus boxes” and “applications boxes” in each chapter to link biology and engineering in today's world. To help grasp complex material quickly and easily, a glossary is provided. Applied Cell and Molecular Biology for Engineers features: Clear descriptions of cell structures and functions Detailed coverage of cellular communication In-depth information on cellular energy conversion Concise facts on information flow across generations A succinct guide to the evolution of cells to organisms Inside This Biomedical Engineering Guide Biomolecules: • Energetics • Components of the cell • Cell Morphology: • Cell membranes • Cell organelles • Enzyme Kinetics: • Steady-state kinetics • Enzyme inhibition • Cellular Signal Transduction: • Receptor binding • Apoptosis • Energy Conversion: • Cell metabolism • Cell respiration • Cellular Communication: • Direct • Local • Long distance • Cellular Genetics: • DNA and RNA synthesis and repair • Cell Division and Growth: • Cell cycle • Mitosis • Stem cells • Cellular Development: • Germ cells and fertilization • Limb development • From Cells to Organisms: • Cell differentiation • Systems biology

Numerical and Statistical Methods for Bioengineering

Applications in MATLAB

Author: Michael R. King,Nipa A. Mody

Publisher: Cambridge University Press

ISBN: 9781139493420

Category: Technology & Engineering

Page: 594

View: 8619

The first MATLAB-based numerical methods textbook for bioengineers that uniquely integrates modelling concepts with statistical analysis, while maintaining a focus on enabling the user to report the error or uncertainty in their result. Between traditional numerical method topics of linear modelling concepts, nonlinear root finding, and numerical integration, chapters on hypothesis testing, data regression and probability are interweaved. A unique feature of the book is the inclusion of examples from clinical trials and bioinformatics, which are not found in other numerical methods textbooks for engineers. With a wealth of biomedical engineering examples, case studies on topical biomedical research, and the inclusion of end of chapter problems, this is a perfect core text for a one-semester undergraduate course.

Human Resources for Medical Devices

The Role of Biomedical Engineers

Author: World Health Organization

Publisher: Who Medical Device Technical

ISBN: 9789241565479

Category: Business & Economics

Page: 236

View: 4448

This publication addresses the role of the biomedical engineer in the development, regulation, management, training, and use of medical devices. The first part of the book looks at the biomedical engineering profession globally as part of the health workforce: global numbers and statistics, professional classification, general education and training, professional associations, and the certification process. The second part addresses all of the different roles that the biomedical engineer can have in the life cycle of the technology, from research and development, and innovation, mainly undertaken in academia; the regulation of devices entering the market; and the assessment or evaluation in selecting and prioritizing medical devices (usually at national level); to the role they play in the management of devices from selection and procurement to safe use in healthcare facilities. The annexes present comprehensive information on academic programs, professional societies, and relevant WHO and UN documents related to human resources for health as well as the reclassification proposal for ILO. This publication can be used to encourage the availability, recognition, and increased participation of biomedical engineers as part of the health workforce, particularly following the recent adoption of the recommendations of the UN High-Level Commission on Health Employment and Economic Growth, the WHO Global Strategy on Human Resources for Health, and the establishment of national health workforce accounts. The document also supports the aim of reclassification of the role of the biomedical engineer as a specific engineer that supports the development, access, and use of medical devices within the national, regional, and global occupation classification system.

Diagnostic Ultrasound Imaging: Inside Out

Author: Thomas L. Szabo

Publisher: Academic Press

ISBN: 012396542X

Category: Technology & Engineering

Page: 832

View: 703

Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB® code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models

Fundamental Neuroscience

Author: Larry R. Squire

Publisher: Academic Press

ISBN: 0123858704

Category: Medical

Page: 1127

View: 8221

Fundamental Neuroscience, 3rd Edition introduces graduate and upper-level undergraduate students to the full range of contemporary neuroscience. Addressing instructor and student feedback on the previous edition, all of the chapters are rewritten to make this book more concise and student-friendly than ever before. Each chapter is once again heavily illustrated and provides clinical boxes describing experiments, disorders, and methodological approaches and concepts. A companion web site contains test questions, and an imagebank of the figures for ready use in presentations, slides, and handouts. Capturing the promise and excitement of this fast-moving field, Fundamental Neuroscience, 3rd Edition is the text that students will be able to reference throughout their neuroscience careers! New to this edition: * 30% new material including new chapters on Dendritic Development and Spine Morphogenesis, Chemical Senses, Cerebellum, Eye Movements, Circadian Timing, Sleep and Dreaming, and Consciousness * Companion website with figures, web links to additional material, and test questions * Additional text boxes describing key experiments, disorders, methods, and concepts * Multiple model system coverage beyond rats, mice, and monkeys * Extensively expanded index for easier referencing

Ultrasound Elastography for Biomedical Applications and Medicine

Author: Ivan Z. Nenadic,Matthew W. Urban,Jean-Luc Gennisson,Miguel Bernal,Mikael Tanter,James F. Greenleaf

Publisher: Wiley

ISBN: 1119021510

Category: Technology & Engineering

Page: 616

View: 2715

Ultrasound Elastography for Biomedical Applications and Medicine Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Mayo Clinic Ultrasound Research Laboratory, Mayo Clinic College of Medicine, USA Jean-Luc Gennisson, Miguel Bernal, Mickael Tanter, Institut Langevin – Ondes et Images, ESPCI ParisTech CNRS, France Covers all major developments and techniques of Ultrasound Elastography and biomedical applications The field of ultrasound elastography has developed various techniques with the potential to diagnose and track the progression of diseases such as breast and thyroid cancer, liver and kidney fibrosis, congestive heart failure, and atherosclerosis. Having emerged in the last decade, ultrasound elastography is a medical imaging modality that can noninvasively measure and map the elastic and viscous properties of soft tissues. Ultrasound Elastography for Biomedical Applications and Medicine covers the basic physics of ultrasound wave propagation and the interaction of ultrasound with various media. The book introduces tissue elastography, covers the history of the field, details the various methods that have been developed by research groups across the world, and describes its novel applications, particularly in shear wave elastography. Key features: Covers all major developments and techniques of ultrasound elastography and biomedical applications. Contributions from the pioneers of the field secure the most complete coverage of ultrasound elastography available. The book is essential reading for researchers and engineers working in ultrasound and elastography, as well as biomedical engineering students and those working in the field of biomechanics.

Implantable Neural Prostheses 1

Devices and Applications

Author: David Zhou,Elias Greenbaum

Publisher: Springer Science & Business Media

ISBN: 9780387772615

Category: Technology & Engineering

Page: 376

View: 3510

Significant progress has been made in the development of neural prostheses to restore human functions and improve the quality of human life. Biomedical engineers and neuroscientists around the world are working to improve design and performance of existing devices and to develop novel devices for artificial vision, artificial limbs, and brain–machine interfaces. This book, Implantable Neural Prostheses 1: Devices and Applications,ispart one of a two-book series and describes state-of-the-art advances in techniques associated with implantable neural prosthetic devices and their applications. Devices covered include sensory prosthetic devices, such as visual implants, cochlear implants, auditory midbrain implants, and spinal cord stimulators. Motor prosthetic devices, such as deep brain stimulators, Bion microstimu- tors, the brain control and sensing interface, and cardiac electro-stimulation devices are also included. Progress in magnetic stimulation that may offer a non-invasive approach to prosthetic devices is introduced. Regulatory approval of implantable medical devices in the United States and Europe is also discussed.

Signal Processing for Neuroscientists

An Introduction to the Analysis of Physiological Signals

Author: Wim van Drongelen

Publisher: Elsevier

ISBN: 9780080467757

Category: Science

Page: 320

View: 3953

Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the ‘golden trio’ in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. Multiple color illustrations are integrated in the text Includes an introduction to biomedical signals, noise characteristics, and recording techniques Basics and background for more advanced topics can be found in extensive notes and appendices A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670

Irreversible Electroporation

Author: Boris Rubinsky

Publisher: Springer Science & Business Media

ISBN: 364205420X

Category: Technology & Engineering

Page: 313

View: 9460

Non-thermal irreversible electroporation is a new minimally invasive surgical p- cedure with unique molecular selectivity attributes – in fact it may be considered the first clinical molecular surgery procedure. Non-thermal irreversible electro- ration is a molecular selective mode of cell ablation that employs brief electrical fields to produce nanoscale defects in the cell membrane, which can lead to cell death, without an effect on any of the other tissue molecules. The electrical fields can be produced through contact by insertion of electrode needles around the undesirable tissue and non-invasively by electromagnetic induction. This new - dition to the medical armamentarium requires the active involvement and is of interest to clinical physicians, medical researchers, mechanical engineers, che- cal engineers, electrical engineers, instrumentation designers, medical companies and many other fields and disciplines that were never exposed in their training to irreversible electroporation or to a similar concept. This edited book is designed to be a comprehensive introduction to the field of irreversible electroporation to those that were not exposed or trained in the field before and can also serve as a reference manual. Irreversible electroporation is broad and interdisciplinary. Therefore, we have made an attempt to cover every one of the various aspects of the field from an introductory basic level to state of the art.

Career Development in Bioengineering and Biotechnology

Author: Guruprasad Madhavan,Barbara Oakley,Luis Kun

Publisher: Springer Science & Business Media

ISBN: 9780387764955

Category: Technology & Engineering

Page: 536

View: 1131

This indispensable guide provides a roadmap to the broad and varied career development opportunities in bioengineering, biotechnology, and related fields. Eminent practitioners lay out career paths related to academia, industry, government and regulatory affairs, healthcare, law, marketing, entrepreneurship, and more. Lifetimes of experience and wisdom are shared, including "war stories," strategies for success, and discussions of the authors’ personal views and motivations.

Encyclopedia of Biomedical Engineering

Author: Roger Narayan

Publisher: Elsevier

ISBN: 9780128048290

Category: Science

Page: 1352

View: 4362

Encyclopedia of Biomedical Engineering is a unique source for rapidly evolving updates on topics that are at the interface of the biological sciences and engineering. Biomaterials, biomedical devices and techniques play a significant role in improving the quality of health care in the developed world. The book covers an extensive range of topics related to biomedical engineering, including biomaterials, sensors, medical devices, imaging modalities and imaging processing. In addition, applications of biomedical engineering, advances in cardiology, drug delivery, gene therapy, orthopedics, ophthalmology, sensing and tissue engineering are explored. This important reference work serves many groups working at the interface of the biological sciences and engineering, including engineering students, biological science students, clinicians, and industrial researchers. Provides students with a concise description of the technologies at the interface of the biological sciences and engineering Covers all aspects of biomedical engineering, also incorporating perspectives from experts working within the domains of biomedicine, medical engineering, biology, chemistry, physics, electrical engineering, and more Contains reputable, multidisciplinary content from domain experts Presents a 'one-stop' resource for access to information written by world-leading scholars in the field

Introduction to Biomedical Engineering Technology, Second Edition

Author: Laurence J. Street

Publisher: CRC Press

ISBN: 1439860661

Category: Medical

Page: 392

View: 9930

Medical devices are often very complex, but while there are differences in design from one manufacturer to another, the principles of operation and, more importantly, the physiological and anatomical characteristics on which they operate are universal. Introduction to Biomedical Engineering Technology, Second Edition explains the uses and applications of medical technology and the principles of medical equipment management to familiarize readers with their prospective work environment. Written by an experienced biomedical engineering technologist, the book describes the technological devices, various hardware, tools, and test equipment used in today’s health-care arena. Photographs of representative equipment; the technical, physiological, and anatomical basis for their function; and where they are commonly found in hospitals are detailed for a wide range of biomedical devices, from defibrillators to electrosurgery units. Throughout, the text incorporates real-life examples of the work that biomedical engineering technologists do. Appendices supply useful information such as normal medical values, a list of regulatory bodies, Internet resources, and information on training programs. Thoroughly revised and updated, this second edition includes more examples and illustrations as well as end-of-chapter questions to test readers’ understanding. This accessible text supplies an essential overview of clinical equipment and the devices that are used directly with patients in the course of their care for diagnostic or treatment purposes. The author’s practical approach and organization, outlining everyday functions and applications of the various medical devices, prepares readers for situations they will encounter on the job. What’s New in This Edition: Revised and updated throughout, including a wider range of devices, full-color anatomy illustrations, and more information about test equipment New, integrated end-of-chapter questions More real-life examples of Biomedical Engineering Technologist (BMET) work, including the adventures of "Joe Biomed" and his colleagues New appendices with information about normal medical values, regulatory bodies, educational programs in the United States and Canada, international BMET associations, Internet resources, and lists of test equipment manufacturers More illustrations