**Author**: Xin-She Yang

**Publisher:** Academic Press

**ISBN:** 9780128097304

**Category:**

**Page:** 400

**View:** 7307

Engineering Mathematics with Examples and Applications provides a compact and concise primer in the field, starting with the foundations, and then gradually developing to the advanced level of mathematics that is necessary for all engineering disciplines. Therefore, this book's aim is to help undergraduates rapidly develop the fundamental knowledge of engineering mathematics. The book can also be used by graduates to review and refresh their mathematical skills. Step-by-step worked examples will help the students gain more insights and build sufficient confidence in engineering mathematics and problem-solving. The main approach and style of this book is informal, theorem-free, and practical. By using an informal and theorem-free approach, all fundamental mathematics topics required for engineering are covered, and readers can gain such basic knowledge of all important topics without worrying about rigorous (often boring) proofs. Certain rigorous proof and derivatives are presented in an informal way by direct, straightforward mathematical operations and calculations, giving students the same level of fundamental knowledge without any tedious steps. In addition, this practical approach provides over 100 worked examples so that students can see how each step of mathematical problems can be derived without any gap or jump in steps. Thus, readers can build their understanding and mathematical confidence gradually and in a step-by-step manner. Covers fundamental engineering topics that are presented at the right level, without worry of rigorous proofs Includes step-by-step worked examples (of which 100+ feature in the work) Provides an emphasis on numerical methods, such as root-finding algorithms, numerical integration, and numerical methods of differential equations Balances theory and practice to aid in practical problem-solving in various contexts and applications

This text teaches maths in a step-by-step fashion – ideal for students on first-year engineering and pre-degree courses. - Hundreds of examples and exercises, the majority set in an applied engineering context so that you immediately see the purpose of what you are learning - Introductory chapter revises indices, fractions, decimals, percentages and ratios - Fully worked solutions to every problem on the companion website at www.palgrave.com/engineering/singh plus searchable glossary, e-index, extra exercises, extra content and more!

Now in its eighth edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams. John Bird's approach is based on worked examples and interactive problems. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure that readers can relate theory to practice. The extensive and thorough topic coverage makes this an ideal text for a range of Level 2 and 3 engineering courses. This title is supported by a companion website with resources for both students and lecturers, including lists of essential formulae and multiple choice tests.

Now in its sixth edition, Higher Engineering Mathematics is an established textbook that has helped many thousands of students to gain exam success. John Bird's approach is ideal for students from a wide range of academic backgrounds, and can be worked through at the student's own pace. Mathematical theories are examined in the simplest of terms, supported by practical examples and applications from a wide variety of engineering disciplines, to ensure that the reader can apply theory to practice. This extensive and thorough topic coverage makes this an ideal book for a range of university degree modules, foundation degrees, and HNC/D units. This new edition of Higher Engineering Mathematics has been further extended with topics specifically written to help first year engineering degree students and those following foundation degrees. New material has been added on logarithms and exponential functions, binary, octal and hexadecimal numbers, vectors and methods of adding alternating waveforms. This book caters specifically for the engineering mathematics units of the Higher National Engineering schemes from Edexcel, including the core unit Analytical methods for Engineers, and two optional units: Further Analytical Methods for Engineers and Engineering Mathematics, common to both the electrical/electronic engineering and mechanical engineering pathways. A mapping grid is included showing precisely which topics are required for the learning outcomes of each unit. Higher Engineering Mathematics contains examples, supported by 900 worked problems and 1760 further problems contained within exercises throughout the text. In addition, 19 revision tests, which are available to use as tests or as homework are included at regular intervals.

Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) that reinforce ideas and provide insight into more advanced problems. Comprehensive coverage of frequently used integrals, functions and fundamental mathematical results Contents selected and organized to suit the needs of students, scientists, and engineers Contains tables of Laplace and Fourier transform pairs New section on numerical approximation New section on the z-transform Easy reference system

First published in 1992, Essentials of Engineering Mathematics is a widely popular reference ideal for self-study, review, and fast answers to specific questions. While retaining the style and content that made the first edition so successful, the second edition provides even more examples, new material, and most importantly, an introduction to using two of the most prevalent software packages in engineering: Maple and MATLAB. Specifically, this edition includes: Introductory accounts of Maple and MATLAB that offer a quick start to using symbolic software to perform calculations, explore the properties of functions and mathematical operations, and generate graphical output New problems involving the mean value theorem for derivatives Extension of the account of stationary points of functions of two variables The concept of the direction field of a first-order differential equation Introduction to the delta function and its use with the Laplace transform The author includes all of the topics typically covered in first-year undergraduate engineering mathematics courses, organized into short, easily digestible sections that make it easy to find any subject of interest. Concise, right-to-the-point exposition, a wealth of examples, and extensive problem sets at the end each chapter--with answers at the end of the book--combine to make Essentials of Engineering Mathematics, Second Edition ideal as a supplemental textbook, for self-study, and as a quick guide to fundamental concepts and techniques.

Students today enter engineering courses with a wide range of mathematical skills, due to the many different pre-university qualifications studied. Bill Cox's aim is for students to gain a thorough understanding of the maths they are studying, by first strengthening their background in the essentials of each topic. His approach allows a unique self-paced study style, in which students Review their strengths and weaknesses through self-administered diagnostic tests, then focus on Revision where they need it, to finally Reinforce the skills required. Understanding Engineering Mathematics is structured around a highly successful 'transition' maths course at Aston University which has demonstrated a clear improvement in students' achievement in mathematics, and has been commended by QAA Subject Review and engineering accreditation reports. A core undergraduate text with a unique interactive style that enables students to diagnose their strengths and weaknesses and focus their efforts where needed Ideal for self-paced self-study and tutorial work, building from an initially supportive approach to the development of independent learning skills Lots of targeted examples and exercises

The tenth edition of this bestselling text includes examples in more detail and more applied exercises; both changes are aimed at making the material more relevant and accessible to readers. Kreyszig introduces engineers and computer scientists to advanced math topics as they relate to practical problems. It goes into the following topics at great depth differential equations, partial differential equations, Fourier analysis, vector analysis, complex analysis, and linear algebra/differential equations.

Beginning with linear algebra and later expanding into calculus of variations, Advanced Engineering Mathematics provides accessible and comprehensive mathematical preparation for advanced undergraduate and beginning graduate students taking engineering courses. This book offers a review of standard mathematics coursework while effectively integrating science and engineering throughout the text. It explores the use of engineering applications, carefully explains links to engineering practice, and introduces the mathematical tools required for understanding and utilizing software packages. Provides comprehensive coverage of mathematics used by engineering students Combines stimulating examples with formal exposition and provides context for the mathematics presented Contains a wide variety of applications and homework problems Includes over 300 figures, more than 40 tables, and over 1500 equations Introduces useful MathematicaTM and MATLAB® procedures Presents faculty and student ancillaries, including an online student solutions manual, full solutions manual for instructors, and full-color figure sides for classroom presentations Advanced Engineering Mathematics covers ordinary and partial differential equations, matrix/linear algebra, Fourier series and transforms, and numerical methods. Examples include the singular value decomposition for matrices, least squares solutions, difference equations, the z-transform, Rayleigh methods for matrices and boundary value problems, the Galerkin method, numerical stability, splines, numerical linear algebra, curvilinear coordinates, calculus of variations, Liapunov functions, controllability, and conformal mapping. This text also serves as a good reference book for students seeking additional information. It incorporates Short Takes sections, describing more advanced topics to readers, and Learn More about It sections with direct references for readers wanting more in-depth information.

Introductory mathematics written specifically for students new to engineering Now in its sixth edition, Basic Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams. John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure that readers can relate theory to practice. The extensive and thorough topic coverage makes this an ideal text for introductory level engineering courses. This title is supported by a companion website with resources for both students and lecturers, including lists of essential formulae, multiple choice tests, full solutions for all 1,600 further questions contained within the practice exercises, and biographical information on the 25 famous mathematicians and engineers referenced throughout the book. The companion website for this title can be accessed from www.routledge.com/cw/bird

This book addresses the need to have an engineering mathematics book focused at fire engineering. It includes review of the basic mathematical concepts followed by discussion of important concepts like transposing equations, forming a key part of engineering solutions.

Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book. Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer. The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses. Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering

Based on course notes from over twenty years of teaching engineering and physical sciences at Michigan Technological University, Tomas Co's engineering mathematics textbook is rich with examples, applications and exercises. Professor Co uses analytical approaches to solve smaller problems to provide mathematical insight and understanding, and numerical methods for large and complex problems. The book emphasises applying matrices with strong attention to matrix structure and computational issues such as sparsity and efficiency. Chapters on vector calculus and integral theorems are used to build coordinate-free physical models with special emphasis on orthogonal co-ordinates. Chapters on ODEs and PDEs cover both analytical and numerical approaches. Topics on analytical solutions include similarity transform methods, direct formulas for series solutions, bifurcation analysis, Lagrange–Charpit formulas, shocks/rarefaction and others. Topics on numerical methods include stability analysis, DAEs, high-order finite-difference formulas, Delaunay meshes, and others. MATLAB® implementations of the methods and concepts are fully integrated.

Engineers require a solid knowledge of the relationship between engineering applications and underlying mathematical theory. However, most books do not present sufficient theory, or they do not fully explain its importance and relevance in understanding those applications. Advanced Engineering Mathematics with Modeling Applications employs a balanced approach to address this informational void, providing a solid comprehension of mathematical theory that will enhance understanding of applications – and vice versa. With a focus on modeling, this book illustrates why mathematical methods work, when they apply, and what their limitations are. Designed specifically for use in graduate-level courses, this book: Emphasizes mathematical modeling, dimensional analysis, scaling, and their application to macroscale and nanoscale problems Explores eigenvalue problems for discrete and continuous systems and many applications Develops and applies approximate methods, such as Rayleigh-Ritz and finite element methods Presents applications that use contemporary research in areas such as nanotechnology Apply the Same Theory to Vastly Different Physical Problems Presenting mathematical theory at an understandable level, this text explores topics from real and functional analysis, such as vector spaces, inner products, norms, and linear operators, to formulate mathematical models of engineering problems for both discrete and continuous systems. The author presents theorems and proofs, but without the full detail found in mathematical books, so that development of the theory does not obscure its application to engineering problems. He applies principles and theorems of linear algebra to derive solutions, including proofs of theorems when they are instructive. Tying mathematical theory to applications, this book provides engineering students with a strong foundation in mathematical terminology and methods.

A paperback edition of successful and well reviewed 1995 graduate text on applied mathematics for engineers.

First truly up-to-date treatment offers a simple introduction to optimal control, linear-quadratic control design, and more. Broad perspective features numerous exercises, hints, outlines, and appendixes, including a practical discussion of MATLAB. 2005 edition.

Newnes Engineering Science Pocket Book provides a readily available reference to the essential engineering science formulae, definitions, and general information needed during studies and/or work situation. This book consists of three main topics— general engineering science, electrical engineering science, and mechanical engineering science. In these topics, this text specifically discusses the atomic structure of matter, standard quality symbols and units, chemical effects of electricity, and capacitors and capacitance. The alternating currents and voltages, three phase systems, D.C. machines, and A.C. motors are also elaborated. This compilation likewise covers the linear momentum and impulse, effects of forces on materials, and pressure in fluids. This publication is useful for technicians and engineers, as well as students studying for technician certificates and diplomas, GCSE, and A levels.

Mathematics for Civil Engineers provides a concise introduction to the fundamental concepts of mathematics that are closely related to civil engineering. By using an informal and theorem-free approach with more than 150 step-by-step examples, all the key mathematical concepts and techniques are introduced. Thus users of this textbook will gain the basic knowledge and understanding required for their work. Exercises are included In each chapter to give readers the opportunity to apply their new knowledge; the answers to these dozens of exercises are provided at the end of the book. Topics include functions, trigonometrical functions, equations, polynomials, vectors and matrices, eigenvalues and eigenvectors, tensors, differentiation, integration, advanced calculus such as double integrals and special integrals, complex numbers, differential equations, Fourier series and transforms, Laplace transforms, probability and statistics, curve-fitting and linear regression. Advanced topics include partial differential equations and integral equations, root-finding algorithms for nonlinear equations, numerical methods for solving differential equations, optimization and nonlinear optimization. Mathematics for Civil Engineers allows undergraduates and civil engineers to develop a necessary, essential, knowledge of engineering mathematics. Many of the worked examples are chosen to reflect situations and problems in civil engineering practise. Examples include moment of inertia, second moment of area, beam buckling, harmonic motion and forced harmonic motion, elasticity, transfer function, waves and heat transfer, maximization and minimization and many others. All these topics and examples will help readers to gain more insight and to build sufficient confidence in applying engineering mathematics for problem solving in real engineering situations. This book may also be useful for practitioners in other engineering disciplines to improve their basic mathematical skills.

This Thoroughly Revised Edition Is Designed For The Core Course On The Subject And Presents A Detailed Yet Simple Treatment Of The Fundamental Principles Involved In Engineering Mathematics. All Basic Concepts Have Been Comprehensively Explained And Illustrated Through A Variety Of Solved Examples. Instead Of Too Much Mathematically Involved Illustrations, A Step-By-Step Approach Has Been Followed Throughout The Book. Unsolved Problems, Objective And Review Questions Along With Short Answer Questions Have Been Also Included For A Thorough Grasp Of The Subject. Graded Problems Have Been Included From Different Examinations.The Book Would Serve As An Excellent Text For Undergraduate Engineering And Diploma Students Of All Disciplines. Amie Candidates Would Also Find It Very Useful. The Topics Given In This Book Covers The Syllabuses Of Various Universities And Institutions E.G., Various Nit S, Jntu, Bit S Etc.

This compendium of essential formulae, definitions, tables and general information provides the mathematical information required by students, technicians, scientists and engineers in day-to-day engineering practice. A practical and versatile reference source, now in its fourth edition, the layout has been changed and the book has been streamlined to ensure the information is even more quickly and readily available - making it a handy companion on-site, in the office as well as for academic study. It also acts as a practical revision guide for those undertaking BTEC Nationals, Higher Nationals and NVQs, where engineering mathematics is an underpinning requirement of the course. All the essentials of engineering mathematics - from algebra, geometry and trigonometry to logic circuits, differential equations and probability - are covered, with clear and succinct explanations and illustrated with over 300 line drawings and 500 worked examples based in real-world application. The emphasis throughout the book is on providing the practical tools needed to solve mathematical problems quickly and efficiently in engineering contexts. John Bird's presentation of this core material puts all the answers at your fingertips. * A compendium of the maths essential to all engineering disciplines * Succinct, easily accessible information, combined with comprehensive coverage – ideal for ongoing reference by both professional engineers and students alike * New, improved structure to make information available even more quickly