Engineering Mathematics with Examples and Applications

Author: Xin-She Yang

Publisher: Academic Press

ISBN: 012809902X

Category: Mathematics

Page: 400

View: 6434

Engineering Mathematics with Examples and Applications provides a compact and concise primer in the field, starting with the foundations, and then gradually developing to the advanced level of mathematics that is necessary for all engineering disciplines. Therefore, this book's aim is to help undergraduates rapidly develop the fundamental knowledge of engineering mathematics. The book can also be used by graduates to review and refresh their mathematical skills. Step-by-step worked examples will help the students gain more insights and build sufficient confidence in engineering mathematics and problem-solving. The main approach and style of this book is informal, theorem-free, and practical. By using an informal and theorem-free approach, all fundamental mathematics topics required for engineering are covered, and readers can gain such basic knowledge of all important topics without worrying about rigorous (often boring) proofs. Certain rigorous proof and derivatives are presented in an informal way by direct, straightforward mathematical operations and calculations, giving students the same level of fundamental knowledge without any tedious steps. In addition, this practical approach provides over 100 worked examples so that students can see how each step of mathematical problems can be derived without any gap or jump in steps. Thus, readers can build their understanding and mathematical confidence gradually and in a step-by-step manner. Covers fundamental engineering topics that are presented at the right level, without worry of rigorous proofs Includes step-by-step worked examples (of which 100+ feature in the work) Provides an emphasis on numerical methods, such as root-finding algorithms, numerical integration, and numerical methods of differential equations Balances theory and practice to aid in practical problem-solving in various contexts and applications

Engineering Mathematics Through Applications

Author: Kuldeep Singh

Publisher: Macmillan International Higher Education

ISBN: 0230345980

Category: Mathematics

Page: 944

View: 6823

This text teaches maths in a step-by-step fashion – ideal for students on first-year engineering and pre-degree courses. - Hundreds of examples and exercises, the majority set in an applied engineering context so that you immediately see the purpose of what you are learning - Introductory chapter revises indices, fractions, decimals, percentages and ratios - Fully worked solutions to every problem on the companion website at www.palgrave.com/engineering/singh plus searchable glossary, e-index, extra exercises, extra content and more!

Higher Engineering Mathematics

Author: John Bird

Publisher: Routledge

ISBN: 185617767X

Category: Technology & Engineering

Page: 679

View: 8223

Now in its sixth edition, Higher Engineering Mathematics is an established textbook that has helped many thousands of students to gain exam success. John Bird's approach is ideal for students from a wide range of academic backgrounds, and can be worked through at the student's own pace. Mathematical theories are examined in the simplest of terms, supported by practical examples and applications from a wide variety of engineering disciplines, to ensure that the reader can apply theory to practice. This extensive and thorough topic coverage makes this an ideal book for a range of university degree modules, foundation degrees, and HNC/D units. This new edition of Higher Engineering Mathematics has been further extended with topics specifically written to help first year engineering degree students and those following foundation degrees. New material has been added on logarithms and exponential functions, binary, octal and hexadecimal numbers, vectors and methods of adding alternating waveforms. This book caters specifically for the engineering mathematics units of the Higher National Engineering schemes from Edexcel, including the core unit Analytical methods for Engineers, and two optional units: Further Analytical Methods for Engineers and Engineering Mathematics, common to both the electrical/electronic engineering and mechanical engineering pathways. A mapping grid is included showing precisely which topics are required for the learning outcomes of each unit. Higher Engineering Mathematics contains examples, supported by 900 worked problems and 1760 further problems contained within exercises throughout the text. In addition, 19 revision tests, which are available to use as tests or as homework are included at regular intervals.

Engineering Mathematics

Author: John Bird

Publisher: Taylor & Francis

ISBN: 1317202600

Category: Mathematics

Page: 710

View: 6078

Now in its eighth edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams. John Bird's approach is based on worked examples and interactive problems. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure that readers can relate theory to practice. The extensive and thorough topic coverage makes this an ideal text for a range of Level 2 and 3 engineering courses. This title is supported by a companion website with resources for both students and lecturers, including lists of essential formulae and multiple choice tests.

Engineering Mathematics Pocket Book

Author: John Bird

Publisher: Routledge

ISBN: 0750681535

Category: Mathematics

Page: 531

View: 3902

This compendium of essential formulae, definitions, tables and general information provides the mathematical information required by students, technicians, scientists and engineers in day-to-day engineering practice. A practical and versatile reference source, now in its fourth edition, the layout has been changed and the book has been streamlined to ensure the information is even more quickly and readily available - making it a handy companion on-site, in the office as well as for academic study. It also acts as a practical revision guide for those undertaking BTEC Nationals, Higher Nationals and NVQs, where engineering mathematics is an underpinning requirement of the course. All the essentials of engineering mathematics - from algebra, geometry and trigonometry to logic circuits, differential equations and probability - are covered, with clear and succinct explanations and illustrated with over 300 line drawings and 500 worked examples based in real-world application. The emphasis throughout the book is on providing the practical tools needed to solve mathematical problems quickly and efficiently in engineering contexts. John Bird's presentation of this core material puts all the answers at your fingertips. * A compendium of the maths essential to all engineering disciplines * Succinct, easily accessible information, combined with comprehensive coverage – ideal for ongoing reference by both professional engineers and students alike * New, improved structure to make information available even more quickly

Advanced Engineering Mathematics

Author: Alan Jeffrey

Publisher: Elsevier

ISBN: 9780080522968

Category: Mathematics

Page: 1184

View: 2520

Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) that reinforce ideas and provide insight into more advanced problems. Comprehensive coverage of frequently used integrals, functions and fundamental mathematical results Contents selected and organized to suit the needs of students, scientists, and engineers Contains tables of Laplace and Fourier transform pairs New section on numerical approximation New section on the z-transform Easy reference system

Methods of Applied Mathematics for Engineers and Scientists

Author: Tomas B. Co

Publisher: Cambridge University Press

ISBN: 1107244463

Category: Technology & Engineering

Page: N.A

View: 6799

Based on course notes from over twenty years of teaching engineering and physical sciences at Michigan Technological University, Tomas Co's engineering mathematics textbook is rich with examples, applications and exercises. Professor Co uses analytical approaches to solve smaller problems to provide mathematical insight and understanding, and numerical methods for large and complex problems. The book emphasises applying matrices with strong attention to matrix structure and computational issues such as sparsity and efficiency. Chapters on vector calculus and integral theorems are used to build coordinate-free physical models with special emphasis on orthogonal co-ordinates. Chapters on ODEs and PDEs cover both analytical and numerical approaches. Topics on analytical solutions include similarity transform methods, direct formulas for series solutions, bifurcation analysis, Lagrange–Charpit formulas, shocks/rarefaction and others. Topics on numerical methods include stability analysis, DAEs, high-order finite-difference formulas, Delaunay meshes, and others. MATLAB® implementations of the methods and concepts are fully integrated.

Advanced Engineering Mathematics

Author: Erwin Kreyszig

Publisher: John Wiley & Sons

ISBN: 0470458364

Category: Mathematics

Page: 1264

View: 9256

The tenth edition of this bestselling text includes examples in more detail and more applied exercises; both changes are aimed at making the material more relevant and accessible to readers. Kreyszig introduces engineers and computer scientists to advanced math topics as they relate to practical problems. It goes into the following topics at great depth differential equations, partial differential equations, Fourier analysis, vector analysis, complex analysis, and linear algebra/differential equations.

Essentials Engineering Mathematics

Author: Alan Jeffrey

Publisher: CRC Press

ISBN: 9781584884897

Category: Mathematics

Page: 896

View: 1778

First published in 1992, Essentials of Engineering Mathematics is a widely popular reference ideal for self-study, review, and fast answers to specific questions. While retaining the style and content that made the first edition so successful, the second edition provides even more examples, new material, and most importantly, an introduction to using two of the most prevalent software packages in engineering: Maple and MATLAB. Specifically, this edition includes: Introductory accounts of Maple and MATLAB that offer a quick start to using symbolic software to perform calculations, explore the properties of functions and mathematical operations, and generate graphical output New problems involving the mean value theorem for derivatives Extension of the account of stationary points of functions of two variables The concept of the direction field of a first-order differential equation Introduction to the delta function and its use with the Laplace transform The author includes all of the topics typically covered in first-year undergraduate engineering mathematics courses, organized into short, easily digestible sections that make it easy to find any subject of interest. Concise, right-to-the-point exposition, a wealth of examples, and extensive problem sets at the end each chapter--with answers at the end of the book--combine to make Essentials of Engineering Mathematics, Second Edition ideal as a supplemental textbook, for self-study, and as a quick guide to fundamental concepts and techniques.

Basic Engineering Mathematics

Author: John Bird

Publisher: Routledge

ISBN: 1317937929

Category: Mathematics

Page: 456

View: 369

Introductory mathematics written specifically for students new to engineering Now in its sixth edition, Basic Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams. John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure that readers can relate theory to practice. The extensive and thorough topic coverage makes this an ideal text for introductory level engineering courses. This title is supported by a companion website with resources for both students and lecturers, including lists of essential formulae, multiple choice tests, full solutions for all 1,600 further questions contained within the practice exercises, and biographical information on the 25 famous mathematicians and engineers referenced throughout the book. The companion website for this title can be accessed from www.routledge.com/cw/bird

Advanced Engineering Mathematics

Author: Lawrence Turyn

Publisher: CRC Press

ISBN: 1482219395

Category: Mathematics

Page: 1455

View: 1455

Beginning with linear algebra and later expanding into calculus of variations, Advanced Engineering Mathematics provides accessible and comprehensive mathematical preparation for advanced undergraduate and beginning graduate students taking engineering courses. This book offers a review of standard mathematics coursework while effectively integrating science and engineering throughout the text. It explores the use of engineering applications, carefully explains links to engineering practice, and introduces the mathematical tools required for understanding and utilizing software packages. Provides comprehensive coverage of mathematics used by engineering students Combines stimulating examples with formal exposition and provides context for the mathematics presented Contains a wide variety of applications and homework problems Includes over 300 figures, more than 40 tables, and over 1500 equations Introduces useful MathematicaTM and MATLAB® procedures Presents faculty and student ancillaries, including an online student solutions manual, full solutions manual for instructors, and full-color figure sides for classroom presentations Advanced Engineering Mathematics covers ordinary and partial differential equations, matrix/linear algebra, Fourier series and transforms, and numerical methods. Examples include the singular value decomposition for matrices, least squares solutions, difference equations, the z-transform, Rayleigh methods for matrices and boundary value problems, the Galerkin method, numerical stability, splines, numerical linear algebra, curvilinear coordinates, calculus of variations, Liapunov functions, controllability, and conformal mapping. This text also serves as a good reference book for students seeking additional information. It incorporates Short Takes sections, describing more advanced topics to readers, and Learn More about It sections with direct references for readers wanting more in-depth information.

Advanced Engineering Mathematics with Modeling Applications

Author: S. Graham Kelly

Publisher: CRC Press

ISBN: 1420009443

Category: Mathematics

Page: 522

View: 6890

Engineers require a solid knowledge of the relationship between engineering applications and underlying mathematical theory. However, most books do not present sufficient theory, or they do not fully explain its importance and relevance in understanding those applications. Advanced Engineering Mathematics with Modeling Applications employs a balanced approach to address this informational void, providing a solid comprehension of mathematical theory that will enhance understanding of applications – and vice versa. With a focus on modeling, this book illustrates why mathematical methods work, when they apply, and what their limitations are. Designed specifically for use in graduate-level courses, this book: Emphasizes mathematical modeling, dimensional analysis, scaling, and their application to macroscale and nanoscale problems Explores eigenvalue problems for discrete and continuous systems and many applications Develops and applies approximate methods, such as Rayleigh-Ritz and finite element methods Presents applications that use contemporary research in areas such as nanotechnology Apply the Same Theory to Vastly Different Physical Problems Presenting mathematical theory at an understandable level, this text explores topics from real and functional analysis, such as vector spaces, inner products, norms, and linear operators, to formulate mathematical models of engineering problems for both discrete and continuous systems. The author presents theorems and proofs, but without the full detail found in mathematical books, so that development of the theory does not obscure its application to engineering problems. He applies principles and theorems of linear algebra to derive solutions, including proofs of theorems when they are instructive. Tying mathematical theory to applications, this book provides engineering students with a strong foundation in mathematical terminology and methods.

Mathematics for Electrical Engineering and Computing

Author: Mary P Attenborough

Publisher: Elsevier

ISBN: 9780080473406

Category: Mathematics

Page: 576

View: 7657

Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book. Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer. The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses. Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering

Advanced Engineering Mathematics

Author: Dennis G. Zill

Publisher: Jones & Bartlett Publishers

ISBN: 1284105903

Category: Mathematics

Page: 1024

View: 8818

Modern and comprehensive, the new sixth edition of Zill’s Advanced Engineering Mathematics is a full compendium of topics that are most often covered in engineering mathematics courses, and is extremely flexible to meet the unique needs of courses ranging from ordinary differential equations to vector calculus. A key strength of this best-selling text is Zill’s emphasis on differential equation as mathematical models, discussing the constructs and pitfalls of each.

Engineering Mathematics

Author: K. A. Stroud,Dexter J. Booth

Publisher: Industrial Press Inc.

ISBN: 9780831131524

Category: Mathematics

Page: 1236

View: 8616

A groundbreaking and comprehensive reference with over 500,000 copies sold since it first debuted in 1970, the new fifth edition of Engineering Mathematics has been thoroughly revised and expanded. For the first time, a Personal Tutor CD-ROM is included with every book. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again. Offers a unique programmed approach that takes users through the mathematics in a step-by-step fashion with a wealth of worked examples and exercises. Contains Quizzes, Learning Outcomes and Can You? Checklists that guide readers through each topic and focus understanding. Includes an expanded Foundation section including new chapters on Graphs, Trigonometry, Binomial Series and Functions. Ideal as reference or a self-learning manual. Extra Bonus! Visit Personal Tutor Online at www.palgrave.com/stroud, the companion website maintained by this book's British publisher, where you'll find hundreds of interactive practice questions and engineering applications questions – putting the mathematics in context.

Understanding Engineering Mathematics

Author: Bill Cox

Publisher: Butterworth-Heinemann

ISBN: 9780750650984

Category: Mathematics

Page: 533

View: 4807

* Unique interactive style enables students to diagnose their strengths and weaknesses and focus their efforts where needed * Ideal for self-study and tutorial work, building from an initially supportive approach to the development of independent learning skills * Free website includes solutions to all exercises, additional topics and applications, guide to learning mathematics, and practice material Students today enter engineering courses with a wide range of mathematical skills, due to the many different pre-university qualifications studied. Bill Cox's aim is for students to gain a thorough understanding of the maths they are studying, by first strengthening their background in the essentials of each topic. His approach allows a unique self-paced study style, in which students Review their strengths and weaknesses through self-administered diagnostic tests, then focus on Revision where they need it, to finally Reinforce the skills required. The book is structured around a highly successful 'transition' maths course at Aston University which has demonstrated a clear improvement in students' achievement in mathematics, and has been commended by QAA Subject Review and engineering accreditation reports. A core undergraduate text with a unique interactive style that enables students to diagnose their strengths and weaknesses and focus their efforts where needed Ideal for self-paced self-study and tutorial work, building from an initially supportive approach to the development of independent learning skills Lots of targeted examples and exercises

Engineering Mathematics with Applications to Fire Engineering

Author: Khalid Khan,Tony Lee Graham

Publisher: CRC Press

ISBN: 1351597604

Category: Mathematics

Page: 366

View: 2446

This book addresses the need to have an engineering mathematics book focused at fire engineering. It includes review of the basic mathematical concepts followed by discussion of important concepts like transposing equations, forming a key part of engineering solutions.

Applied Engineering Mathematics

Author: Xin-She Yang

Publisher: Cambridge Int Science Publishing

ISBN: 1904602568

Category: Mathematics

Page: 319

View: 5406

This book strives to provide a concise and yet comprehensive cover-age of all major mathematical methods in engineering. Topics in-clude advanced calculus, ordinary and partial differential equations, complex variables, vector and tensor analysis, calculus of variations, integral transforms, integral equations, numerical methods, and prob-ability and statistics. Application topics consist of linear elasticity, harmonic motions, chaos, and reaction-diffusion systems. . This book can serve as a textbook in engineering mathematics, mathematical modelling and scientific computing. This book is organised into 19 chapters. Chapters 1-14 introduce various mathematical methods, Chapters 15-18 concern the numeri-cal methods, and Chapter 19 introduces the probability and statistics.

Introductory Mathematics for Engineering Applications

Author: Kuldip S. Rattan,Nathan W. Klingbeil

Publisher: Wiley Global Education

ISBN: 111847659X

Category: Technology & Engineering

Page: 432

View: 7393

Rattan and Klingbeil's Introductory Mathematics for Engineering Applications is designed to help improve engineering student success through application-driven, just-in-time engineering math instruction. Intended to be taught by engineering faculty rather than math faculty, the text emphasizes using math to solve engineering problems instead of focusing on derivations and theory. This text implements an applied approach to teaching math concepts that are essential to introductory engineering courses that has been proven to improve the retention of students in engineering majors from the first to second year and beyond.

Finite Element and Boundary Element Applications in Quantum Mechanics

Author: L. Ramdas Ram-Mohan

Publisher: Oxford University Press on Demand

ISBN: 9780198525226

Category: Mathematics

Page: 605

View: 5635

'... well structured and remarkably comprehensive...' John Pask, Lawrence Livermore National Laboratory, CA'... an excellent textbook to introduce FEM and BEM to students...' Shun-Lien Chua ng, University of Illinois at Urbana-Champaign'... opens new ground for physicists, particularly those interested in condensed matter physics and chemistry...' A.K. Rajagopal, Naval Research Laboratory, Washington D.C.Starting from a clear, concise introduction, the powerful finite element and boundary element methods of engineering are developed for application to quantum mechanics. The reader is led through illustrative examples displaying the strengths of these methods using applications to fundamental quantum mechanical problems and to the design/simulation of quantum nanoscale devices.