**Author**: William E. Boyce,Richard C. DiPrima

**Publisher:** Wiley

**ISBN:** 9780470039403

**Category:** Mathematics

**Page:** 656

**View:** 4397

Written from the perspective of the applied mathematician, the latest edition of this bestselling book focuses on the theory and practical applications of Differential Equations to engineering and the sciences. Emphasis is placed on the methods of solution, analysis, and approximation. Use of technology, illustrations, and problem sets help readers develop an intuitive understanding of the material. Historical footnotes trace the development of the discipline and identify outstanding individual contributions. This book builds the foundation for anyone who needs to learn differential equations and then progress to more advanced studies.

The 10th edition of Elementary Differential Equations, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 10th edition includes new problems, updated figures and examples to help motivate students. The book is written primarily for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for reading the book is a working knowledge of calculus, gained from a normal two or three semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

This introduction to elementary differential equations covers a range of real-world applications, numerical and computer material, and treatment of contemporary topics. It encompasses phase plane diagrams, modelling, graded problem sets and illustrative programs written in BASIC.

Designed to introduce students to the theory and applications of differential equations and to help them formulate scientific problems in terms of such equations, this undergraduate-level text emphasizes applications to problems in biology, economics, engineering, and physics. This edition also includes material on discontinuous solutions, Riccati and Euler equations, and linear difference equations.

A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.

This text has been written in clear and accurate language that students can read and comprehend. The author has minimized the number of explicitly state theorems and definitions, in favor of dealing with concepts in a more conversational manner. This is illustrated by over 250 worked out examples. The problems are extremely high quality and are regarded as one of the text's many strengths. This book also allows the instructor to select the level of technology desired. Trench has simplified this by using the symbols C and L. C exercises call for computation and/or graphics, and L exercises are laboratory exercises that require extensive use of technology. Several sections include informal advice on the use of technology. The instructor who prefers not to emphasize technology can ignore these exercises.

With Wiley’s Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective, including: • Embedded & searchable equations, figures & tables • Math XML • Index with linked pages numbers for easy reference • Redrawn full color figures to allow for easier identification Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal twoï¿1⁄2 or threeï¿1⁄2 semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

The 10th edition of Elementary Differential Equations, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 10th edition includes new problems, updated figures and examples to help motivate students. The book is written primarily for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for reading the book is a working knowledge of calculus, gained from a normal two?, or three? semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.

For briefer traditional courses in elementary differential equations that science, engineering, and mathematics students take following calculus. The Sixth Edition of this widely adopted book remains the same classic differential equations text it's always been, but has been polished and sharpened to serve both instructors and students even more effectively.Edwards and Penney teach students to first solve those differential equations that have the most frequent and interesting applications. Precise and clear-cut statements of fundamental existence and uniqueness theorems allow understanding of their role in this subject. A strong numerical approach emphasizes that the effective and reliable use of numerical methods often requires preliminary analysis using standard elementary techniques.