*The Theory of Calculus*

**Author**: Kenneth A. Ross

**Publisher:** Springer Science & Business Media

**ISBN:**

**Category:** Mathematics

**Page:** 264

**View:** 308

Designed for students having no previous experience with rigorous proofs, this text can be used immediately after standard calculus courses. It is highly recommended for anyone planning to study advanced analysis, as well as for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied, while many abstract ideas, such as metric spaces and ordered systems, are avoided completely. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics, and optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.

From the reviews "This is a reprint of the original edition of Lang’s ‘A First Course in Calculus’, which was first published in 1964....The treatment is ‘as rigorous as any mathematician would wish it’....[The exercises] are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging....There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able." --Mathematical Gazette

The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group

Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.

The main intended audience for this book is undergraduate students in pure and applied sciences, especially those in engineering. Chapters 2 to 4 cover the probability theory they generally need in their training. Although the treatment of the subject is surely su?cient for non-mathematicians, I intentionally avoided getting too much into detail. For instance, topics such as mixed type random variables and the Dirac delta function are only brie?y mentioned. Courses on probability theory are often considered di?cult. However, after having taught this subject for many years, I have come to the conclusion that one of the biggest problems that the students face when they try to learn probability theory, particularly nowadays, is their de?ciencies in basic di?erential and integral calculus. Integration by parts, for example, is often already forgotten by the students when they take a course on probability. For this reason, I have decided to write a chapter reviewing the basic elements of di?erential calculus. Even though this chapter might not be covered in class, the students can refer to it when needed. In this chapter, an e?ort was made to give the readers a good idea of the use in probability theory of the concepts they should already know. Chapter 2 presents the main results of what is known as elementary probability, including Bayes’ rule and elements of combinatorial analysis.

This text on advanced calculus discusses such topics as number systems, the extreme value problem, continuous functions, differentiation, integration and infinite series. The reader will find the focus of attention shifted from the learning and applying of computational techniques to careful reasoning from hypothesis to conclusion. The book is intended both for a terminal course and as preparation for more advanced studies in mathematics, science, engineering and computation.

The present volume is a text designed for a first course in analysis. Although it is logically self-contained, it presupposes the mathematical maturity acquired by students who will ordinarily have had two years of calculus. When used in this context, most of the first part can be omitted, or reviewed extremely rapidly, or left to the students to read by themselves. The course can proceed immediately into Part Two after covering Chapters o and 1. However, the techniques of Part One are precisely those which are not emphasized in elementary calculus courses, since they are regarded as too sophisticated. The context of a third-year course is the first time that they are given proper emphasis, and thus it is important that Part One be thoroughly mastered. Emphasis has shifted from computational aspects of calculus to theoretical aspects: proofs for theorems concerning continuous 2 functions; sketching curves like x e-X, x log x, xlix which are usually regarded as too difficult for the more elementary courses; and other similar matters.

This book, first published in 2004, provides an introduction to the major mathematical structures used in physics today. It covers the concepts and techniques needed for topics such as group theory, Lie algebras, topology, Hilbert space and differential geometry. Important theories of physics such as classical and quantum mechanics, thermodynamics, and special and general relativity are also developed in detail, and presented in the appropriate mathematical language. The book is suitable for advanced undergraduate and beginning graduate students in mathematical and theoretical physics, as well as applied mathematics. It includes numerous exercises and worked examples, to test the reader's understanding of the various concepts, as well as extending the themes covered in the main text. The only prerequisites are elementary calculus and linear algebra. No prior knowledge of group theory, abstract vector spaces or topology is required.