Zahlentheorie

Eine Einführung in die Algebra

Author: Armin Leutbecher

Publisher: Springer-Verlag

ISBN: 3642614051

Category: Mathematics

Page: 356

View: 5782

Auf der Grundlage der Mathematikkenntnisse des ersten Studienjahres bietet der Autor eine Einführung in die Zahlentheorie mit Schwerpunkt auf der elementaren und algebraischen Zahlentheorie. Das Buch wendet sich auch an Nichtspezialisten, denen es über die Zahlen frühzeitig den Weg in die Algebra öffnet. Angestrebte Ziele sind: Der Satz von Kronecker-Weber zur Krönung der Galois-Theorie, der Minkowskische Gitterpunktsatz, der Dirichletsche Primzahlsatz und die Bewertungstheorie der Körper.

Einführung in die Zahlentheorie

Author: Peter Bundschuh

Publisher: Springer-Verlag

ISBN: 3662069067

Category: Mathematics

Page: 338

View: 9786

Inzwischen liegt, erneut überarbeitet und aktualisiert, die vierte Auflage dieses Lehrbuchs vor, das auch der geschichtlichen Entwicklung der Zahlentheorie besondere Aufmerksamkeit schenkt. Dabei werden nicht grundsätzlich die ersten publizierten Beweise zitiert, vielmehr erfährt der Leser den historischen Urheber eines Resultats und erhält Hinweise auf Verschärfungen und Verallgemeinerungen. Dies erlaubt ihm, die Denkweisen und -richtungen nachzuvollziehen, die zur modernen Zahlentheorie führten. Aus den Besprechungen: "... Die Darstellung ist ausführlich, sehr gut lesbar und kommt ohne spezielle Kenntnisse aus. Das Buch kann daher jedem Studenten schon im nullten Semester empfohlen werden." Monatshefte für Mathematik, Österreich, Vol. 108-1989.2-3

Einführung in die Elementare Zahlentheorie

Interaktives Buch mit CD-ROM

Author: Friedrich Schwarz

Publisher: Springer-Verlag

ISBN: 3322848132

Category: Mathematics

Page: 220

View: 3586

Dieses Buch ist gleichzeitig eine Einführung in die Elementare Zahlentheorie wie auch in die Einsatzmöglichkeiten und die Verwendung eines Computer-Algebra-Systems in diesem Teilgebiet der Mathematik. Zahlreiche Beispiele und Aufgaben fordern den Leser zum Experimentieren und Programmieren auf.

Einführung in die analytische Zahlentheorie

Author: Jörg Brüdern

Publisher: Springer-Verlag

ISBN: 3642578233

Category: Mathematics

Page: 238

View: 8017

Diese Einführung in die analytische Zahlentheorie wendet sich an Studierende der Mathematik, die bereits mit der Funktionentheorie und den einfachsten Grundtatsachen der Zahlentheorie vertraut sind und ihre Kenntnisse in Zahlentheorie vertiefen möchten. Die ausführliche, motivierende Darstellung der behandelten Themen soll den Einstieg in die Ideen und technischen Details erleichtern. Geeignet als Begleitlektüre zu Vorlesungen und zum Selbststudium. Mit zahlreichen Aufgaben und Lösungshinweisen.

Introduction to Functional Analysis

Author: Reinhold Meise,Dietmar Vogt

Publisher: Clarendon Press

ISBN: 0191590924

Category:

Page: 448

View: 1504

The book is written for students of mathematics and physics who have a basic knowledge of analysis and linear algebra. It can be used as a textbook for courses and/or seminars in functional analysis. Starting from metric spaces it proceeds quickly to the central results of the field, including the theorem of HahnBanach. The spaces (p Lp (X,(), C(X)' and Sobolov spaces are introduced. A chapter on spectral theory contains the Riesz theory of compact operators, basic facts on Banach and C*-algebras and the spectral representation for bounded normal and unbounded self-adjoint operators in Hilbert spaces. An introduction to locally convex spaces and their duality theory provides the basis for a comprehensive treatment of Fr--eacute--;chet spaces and their duals. In particular recent results on sequences spaces, linear topological invariants and short exact sequences of Fr--eacute--;chet spaces and the splitting of such sequences are presented. These results are not contained in any other book in this field.

Introduction to Cryptography

Author: Johannes Buchmann

Publisher: Springer Science & Business Media

ISBN: 1441990038

Category: Mathematics

Page: 338

View: 7314

This book explains the basic methods of modern cryptography. It is written for readers with only basic mathematical knowledge who are interested in modern cryptographic algorithms and their mathematical foundation. Several exercises are included following each chapter. From the reviews: "Gives a clear and systematic introduction into the subject whose popularity is ever increasing, and can be recommended to all who would like to learn about cryptography." --ZENTRALBLATT MATH

Einführung in die Zahlentheorie und Algebra

Author: Jürgen Wolfart

Publisher: Springer-Verlag

ISBN: 332285034X

Category: Mathematics

Page: 223

View: 470

Eine kombinierte Einführung in die Algebra bis zur Galoistheorie und ihren klassischen Anwendungen sowie in die Zahlentheorie. Dabei profitiert die Algebra von den Motivationen und dem reichen Beispielmaterial der Zahlentheorie; letztere gewinnt an Klarheit und Kürze durch Strukturen und Sätze der Algebra.

Einführung in die algebraische Zahlentheorie

Author: Alexander Schmidt

Publisher: Springer-Verlag

ISBN: 354045974X

Category: Mathematics

Page: 215

View: 6324

Einführung in die Grundgedanken der modernen algebraischen Zahlentheorie, einer der traditionsreichsten und besonders aktuellen Grunddisziplinen der Mathematik. Ausgehend von Themen, die üblicherweise der elementaren Zahlentheorie zugeordnet werden, führt sie anhand konkreter Probleme zu den Kerntechniken der modernen Theorie: Lokal-Global-Prinzipien für diophantische Gleichungen, die Dedekindsche Theorie der Ideale für den Fall quadratischer Zahlkörper, p-adische Zahlen. Zusätzlich beweist sie den berühmten Satz von Hasse-Minkowski über rationale quadratische Formen. Der technische Apparat wird nur in Bezug auf konkrete Fragen entwickelt.

Algebraic Number Theory

Author: Jürgen Neukirch

Publisher: Springer Science & Business Media

ISBN: 3662039834

Category: Mathematics

Page: 574

View: 3807

This introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.

Number Theory and Discrete Mathematics

Author: A.K. Agarwal,Bruce C. Berndt,Christian F. Krattenthaler,Gary L. Mullen,K. Ramachandra,Michel Waldschmidt

Publisher: Birkhäuser

ISBN: 3034882238

Category: Mathematics

Page: 314

View: 9397

To mark the World Mathematical Year 2000 an International Conference on Number Theory and Discrete Mathematics in honour of the legendary Indian Mathematician Srinivasa Ramanuj~ was held at the centre for Advanced study in Mathematics, Panjab University, Chandigarh, India during October 2-6, 2000. This volume contains the proceedings of that conference. In all there were 82 participants including 14 overseas participants from Austria, France, Hungary, Italy, Japan, Korea, Singapore and the USA. The conference was inaugurated by Prof. K. N. Pathak, Hon. Vice-Chancellor, Panjab University, Chandigarh on October 2, 2000. Prof. Bruce C. Berndt of the University of Illinois, Urbana Chaimpaign, USA delivered the key note address entitled "The Life, Notebooks and Mathematical Contributions of Srinivasa Ramanujan". He described Ramanujan--as one of this century's most influential Mathematicians. Quoting Mark K. ac, Prof. George E. Andrews of the Pennsylvania State University, USA, in his message for the conference, described Ramanujan as a "magical genius". During the 5-day deliberations invited speakers gave talks on various topics in number theory and discrete mathematics. We mention here a few of them just as a sampling: • M. Waldschmidt, in his article, provides a very nice introduction to the topic of multiple poly logarithms and their special values. • C.

Einführung in Algebra und Zahlentheorie

Author: Rainer Schulze-Pillot

Publisher: Springer-Verlag

ISBN: 3642552161

Category: Mathematics

Page: 338

View: 9049

Das Buch bietet eine neue Stoffzusammenstellung, die elementare Themen aus der Algebra und der Zahlentheorie verknüpft und für die Verwendung in Bachelorstudiengängen und modularisierten Lehramtsstudiengängen konzipiert ist. Es führt die abstrakten Konzepte der Algebra in stetem Kontakt mit konkreten Problemen der elementaren Zahlentheorie und mit Blick auf Anwendungen ein und bietet Ausblicke auf fortgeschrittene Themen. In beiden Gebieten wird ein Stand erreicht, der für Nichtspezialisten das nötige Handwerkszeug für die meisten Anwendungen (etwa in diskreter Mathematik, Kryptographie oder Signalverarbeitung) vermittelt, aber auch zu einer vertieften Beschäftigung mit Algebra und Zahlentheorie anregt und für diese eine gute Ausgangsbasis bildet. Für die dritte Auflage wurden neben einer allgemeinen Überarbeitung und Fehlerkorrektur zahlreiche Beispiele und Aufgaben neu hinzugefügt. Ferner wird in einem neuen ergänzenden Abschnitt der Beweis der Sätze der linearen Algebra über Normalformen von Matrizen mit Hilfe des Elementarteilersatzes behandelt, da dieser schöne Beweis in Lehrbüchern der Linearen Algebra selten Platz findet.

Number Theory

Algebraic Numbers and Functions

Author: Helmut Koch

Publisher: American Mathematical Soc.

ISBN: 9780821820544

Category: Mathematics

Page: 368

View: 4710

Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem.There are a detailed exposition of the theory of Hecke L-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory.