Einführung in die Zahlentheorie

Author: Peter Bundschuh

Publisher: Springer

ISBN:

Category: Mathematics

Page: 336

View: 330

Inzwischen liegt, erneut überarbeitet und aktualisiert, die fünfte Auflage dieses Lehrbuchs vor, das auch der geschichtlichen Entwicklung der Zahlentheorie besondere Aufmerksamkeit schenkt. Dabei werden nicht grundsätzlich die ersten publizierten Beweise zitiert, vielmehr erfährt der Leser den historischen Urheber eines Resultats und erhält Hinweise auf Verschärfungen und Verallgemeinerungen. Dies erlaubt ihm, die Denkweisen und -richtungen nachzuvollziehen, die zur modernen Zahlentheorie führten. Aus den Besprechungen: "... Die Darstellung ist ausführlich, sehr gut lesbar und kommt ohne spezielle Kenntnisse aus. Das Buch kann daher jedem Studenten schon im nullten Semester empfohlen werden." Monatshefte für Mathematik, Vol. 108-1989.2-3

Einführung in die analytische Zahlentheorie

Author: Jörg Brüdern

Publisher: Birkhäuser

ISBN:

Category: Mathematics

Page: 238

View: 357

Diese Einführung in die analytische Zahlentheorie wendet sich an Studierende der Mathematik, die bereits mit der Funktionentheorie und den einfachsten Grundtatsachen der Zahlentheorie vertraut sind und ihre Kenntnisse in Zahlentheorie vertiefen möchten. Die ausführliche, motivierende Darstellung der behandelten Themen soll den Einstieg in die Ideen und technischen Details erleichtern. Geeignet als Begleitlektüre zu Vorlesungen und zum Selbststudium. Mit zahlreichen Aufgaben und Lösungshinweisen.

Lectures on the Theory of Algebraic Numbers

Author: E. T. Hecke

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 242

View: 132

. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.

From Arithmetic to Zeta-Functions

Number Theory in Memory of Wolfgang Schwarz

Author: Jürgen Sander

Publisher: Springer

ISBN:

Category: Mathematics

Page: 538

View: 619

This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany. Ranging from the theory of arithmetical functions to diophantine problems, to analytic aspects of zeta-functions, the various research and survey articles cover the broad interests of the well-known number theorist and cherished colleague Wolfgang Schwarz (1934-2013), who contributed over one hundred articles on number theory, its history and related fields. Readers interested in elementary or analytic number theory and related fields will certainly find many fascinating topical results among the contributions from both respected mathematicians and up-and-coming young researchers. In addition, some biographical articles highlight the life and mathematical works of Wolfgang Schwarz.

Differentialgleichungen

Erster Teil Gewöhnliche Differentialgleichungen

Author: Wolfgang Grobner

Publisher: Springer Science & Business Media

ISBN:

Category: Juvenile Nonfiction

Page: 208

View: 694

Dieses Buch beruht auf 40 lahren intensiven Studiums der Differentialglei chungen, sowohl yom theoretischen als auch yom praktischen Gesichtspunkt aus, eines Studiums, das mit meiner Tatigkeit im Rechen-Institut M. Picones in Rom begann, sodann fortgesetzt wurde in der Gruppe flir Industriemathema tik der Luftfahrt-Forschungsanstalt in Braunschweig, und endlich mit meinen Vorlesungen, hauptsachlich an der Universitat Innsbruck, abgeschlossen wurde. Die Zeit der Weltraumfliige stellte hier neue Aufgaben der Bahnberechnung von Satelliten, deren Bearbeitung theoretisch eine geschlossene Formel zur Losung des n-Korper-Problems, praktisch eine neue Methode zur Berechnung von reguJaren Differentialgleichungssystemen zeitigte, die mit den besten bekannten Losungsmethoden erfolgreich in Konkurrenz treten konnte, was vor aHem meinen Mitarbeitern H. Knapp und G. Wanner zu danken war. Die Vorlesung iiber Differentialgleichungen habe ich seit 1947 in regelmaBi gen Abstanden an der Universitat Innsbruck gehalten, bei jeder Wiederholung neu bearbeitet und durch Seminararbeiten vervollstandigt; auch in meiner flir Physik-Studenten besonders gehaltenen Vorlesung iiber {raquo}Die mathemati schen Methoden der Physik{laquo} habe ich in gekiirzter Form immer die {raquo}Differen tialgleichungen{laquo} eingeschlossen. In der vorliegenden Fassung wurde vor allem das zweite Kapitel iiber Diffe rentialgleichungen mit analytischen Koeffizienten, also speziell der hypergeome trischen, Besselschen und Kummerschen Differentialgleichungen' neu gefaBt und einem neuen Ordnungsprinzip, der {raquo}Invariante{laquo}, unterworfen. Damit ge lingt es, jede vorgelegte Differentialgleichung rasch einzuordnen und auf eine dieser Standardformen zu transformieren. Diese Transformationsformeln wur den neu entwickelt und werden hier zum ersten Mal veroffentlicht. Fiir alle Satze und Entwicklungen werden strenge Beweise geboten; z. B.

80 Years of Zentralblatt MATH

80 Footprints of Distinguished Mathematicians in Zentralblatt

Author: Olaf Teschke

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 194

View: 484

Founded in 1931 by Otto Neugebauer as the printed documentation service “Zentralblatt für Mathematik und ihre Grenzgebiete”, Zentralblatt MATH (ZBMATH) celebrates its 80th anniversary in 2011. Today it is the most comprehensive and active reference database in pure and applied mathematics worldwide. Many prominent mathematicians have been involved in this service as reviewers or editors and have, like all mathematicians, left their footprints in ZBMATH, in a long list of entries describing all of their research publications in mathematics. This book provides one review from each of the 80 years of ZBMATH. Names like Courant, Kolmogorov, Hardy, Hirzebruch, Faltings and many others can be found here. In addition to the original reviews, the book offers the authors' profiles indicating their co-authors, their favorite journals and the time span of their publication activities. In addition to this, a generously illustrated essay by Silke Göbel describes the history of ZBMATH.

An Introduction to the Theory of Numbers

Author: Godfrey Harold Hardy

Publisher: Oxford University Press

ISBN:

Category: Mathematics

Page: 621

View: 601

An Introduction to the Theory of Numbers by G.H. Hardy and E. M. Wright is found on the reading list of virtually all elementary number theory courses and is widely regarded as the primary and classic text in elementary number theory. This Sixth Edition has been extensively revised and updated to guide today's students through the key milestones and developments in number theory. Updates include a chapter on one of the mostimportant developments in number theory -- modular elliptic curves and their role in the proof of Fermat's Last Theorem -- a foreword by A. Wiles and comprehensively updated end-of-chapter notes detailing the key developments in number theory. Suggestions for further reading are also included for the more avid reader and the clarityof exposition is retained throughout making this textbook highly accessible to undergraduates in mathematics from the first year upwards.