Differential Forms in Algebraic Topology

Author: Raoul Bott,Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1475739516

Category: Mathematics

Page: 338

View: 4080

Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.

Vektoranalysis

Author: Klaus Jänich

Publisher: Springer-Verlag

ISBN: 366210752X

Category: Mathematics

Page: 276

View: 7330

Die Vektoranalysis handelt, in klassischer Darstellung, von Vektorfeldern, den Operatoren Gradient, Divergenz und Rotation, von Linien-, Flächen- und Volumenintegralen und von den Integralsätzen von Gauß, Stokes und Green. In moderner Fassung ist es der Cartansche Kalkül mit dem Satz von Stokes. Das vorliegende Buch vertritt grundsätzlich die moderne Herangehensweise, geht aber auch sorgfältig auf die klassische Notation und Auffassung ein. Das Buch richtet sich an Mathematik- und Physikstudenten ab dem zweiten Studienjahr, die mit den Grundbegriffen der Differential- und Integralrechnung in einer und mehreren Variablen sowie der Topologie vertraut sind. Der sehr persönliche Stil des Autors und die aus anderen Büchern bereits bekannten Lernhilfen, wie: viele Figuren, mehr als 50 kommentierte Übungsaufgaben, über 100 Tests mit Antworten machen, auch diesen Text zum Selbststudium hervorragend geeignet.

Maß und Kategorie

Author: J.C. Oxtoby

Publisher: Springer-Verlag

ISBN: 364296074X

Category: Mathematics

Page: 112

View: 8635

Dieses Buch behandelt hauptsächlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualität" zwischen Maß und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erläutert; die Analogie, die zwischen Maß und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; außerdem werden grundlegende Eigenschaften des Lebesgue schen Maßes hergeleitet. Es zeigt sich, daß die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern daß das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Maßtheorie und Topologie eingeführt; dies geschieht jedoch nicht nur der größeren Allgemeinheit wegen. Es erübrigt sich fast zu erwähnen, daß sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten Probleme bietet sich in natürlicher Weise die mengentheoretische Formulierung an. Das vorlie gende Buch ist als Einführung in dieses Gebiet der Analysis gedacht. Man könnte es als Ergänzung zur üblichen Grundvorlesung über reelle Analysis, als Grundlage für ein Se minar oder auch zum selbständigen Studium verwenden. Bei diesem Buch handelt es sich vorwiegend um eine zusammenfassende Darstellung; jedoch finden sich in ihm auch einige Verfeinerungen bekannter Resultate, namentlich Satz 15.6 und Aussage 20.4. Das Literaturverzeichnis erhebt keinen Anspruch auf Vollständigkeit. Häufig werden Werke zitiert, die weitere Literaturangaben enthalten.

Algebraic Topology Via Differential Geometry

Author: M. Karoubi,C. Leruste

Publisher: Cambridge University Press

ISBN: 9780521317146

Category: Mathematics

Page: 363

View: 9748

In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduced to De Rham cohomology, and explicit and detailed calculations are present as examples. Topics covered include Mayer-Vietoris exact sequences, relative cohomology, Pioncare duality and Lefschetz's theorem. This book will be suitable for graduate students taking courses in algebraic topology and in differential topology. Mathematicians studying relativity and mathematical physics will find this an invaluable introduction to the techniques of differential geometry.

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 8254

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Vektoranalysis

Differentialformen in Analysis, Geometrie und Physik

Author: Ilka Agricola,Thomas Friedrich

Publisher: Springer-Verlag

ISBN: 3834896721

Category: Mathematics

Page: 313

View: 3761

Dieses Lehrbuch eignet sich als Fortsetzungskurs in Analysis nach den Grundvorlesungen im ersten Studienjahr. Die Vektoranalysis ist ein klassisches Teilgebiet der Mathematik mit vielfältigen Anwendungen, zum Beispiel in der Physik. Das Buch führt die Studierenden in die Welt der Differentialformen und Analysis auf Untermannigfaltigkeiten des Rn ein. Teile des Buches können auch sehr gut für Vorlesungen in Differentialgeometrie oder Mathematischer Physik verwendet werden. Der Text enthält viele ausführliche Beispiele mit vollständigem Lösungsweg, die zur Übung hilfreich sind. Zahlreiche Abbildungen veranschaulichen den Text. Am Ende jedes Kapitels befinden sich weitere Übungsaufgaben. In der ersten Auflage erschien das Buch unter dem Titel "Globale Analysis". Der Text wurde an vielen Stellen überarbeitet. Fast alle Bilder wurden neu erstellt. Inhaltliche Ergänzungen wurden u. a. in der Differentialgeometrie sowie der Elektrodynamik vorgenommen.

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1441974008

Category: Mathematics

Page: 410

View: 697

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Kategorien und Funktoren

Author: Bodo Pareigis

Publisher: N.A

ISBN: N.A

Category: Categories (Mathematics)

Page: 192

View: 4127

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 4892

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Manifolds and Modular Forms

Author: Friedrich Hirzebruch

Publisher: Springer-Verlag

ISBN: 3663140458

Category: Mathematics

Page: 212

View: 1834

Topologie I

Erster Band. Grundbegriffe der Mengentheoretischen Topologie Topologie der Komplexe · Topologische Invarianzsätze und Anschliessende Begriffsbildungen · Verschlingungen im n-Dimensionalen Euklidischen Raum Stetige Abbildungen von Polyedern

Author: Paul Alexandroff,H. Hopf

Publisher: Springer-Verlag

ISBN: 3662020211

Category: Mathematics

Page: 638

View: 8770

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Einführung in die Geometrie und Topologie

Author: Werner Ballmann

Publisher: Springer-Verlag

ISBN: 3034809018

Category: Mathematics

Page: 162

View: 1340

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.

Rational Homotopy Theory and Differential Forms

Author: Phillip Griffiths,John Morgan

Publisher: Springer Science & Business Media

ISBN: 1461484685

Category: Mathematics

Page: 227

View: 9887

This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham’s theorem on simplicial complexes. In addition, Sullivan’s results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.

Theoretische Konzepte der Physik

Eine alternative Betrachtung

Author: Malcolm S. Longair

Publisher: Springer-Verlag

ISBN: 3642761119

Category: Science

Page: 380

View: 8330

"Dies ist kein Lehrbuch der theoretischen Physik, auch kein Kompendium der Physikgeschichte ... , vielmehr eine recht anspruchsvolle Sammlung historischer Miniaturen zur Vergangenheit der theoretischen Physik - ihrer "Sternstunden", wenn man so will. Frei vom Zwang, etwas Erschöpfendes vorlegen zu müssen, gelingt dem Autor etwas Seltenes: einen "lebendigen" Zugang zum Ideengebäude der modernen Physik freizulegen, ... zu zeigen, wie Physik in praxi entsteht... Als Vehikel seiner Absichten dienen dem Autor geschichtliche Fallstudien, insgesamt sieben an der Zahl. Aus ihnen extrahiert er das seiner Meinung nach Lehrhafte, dabei bestrebt, mathematische Anachronismen womöglich zu vermeiden... Als Student hätte ich mir diese gescheiten Essays zum Werden unserer heutigen physikalischen Weltsicht gewünscht. Sie sind originell, didaktisch klug und genieren sich auch nicht, von der Faszination zu sprechen, die ... von der Physik ausgeht. Unnötig darauf hinzuweisen, das sie ein gründliches "konventionelles" Studium weder ersetzen wollen noch können, sie vermögen aber, dazu zu ermuntern." #Astronomische Nachrichten (zur englischen Ausgabe)#1

Differential Geometry

Connections, Curvature, and Characteristic Classes

Author: Loring W. Tu

Publisher: Springer

ISBN: 3319550845

Category: Mathematics

Page: 347

View: 5503

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Theorie der Steinschen Räume

Author: H. Grauert,R. Remmert

Publisher: Springer-Verlag

ISBN: 3642666493

Category: Mathematics

Page: 250

View: 9150

A Concise Course in Algebraic Topology

Author: J. P. May

Publisher: University of Chicago Press

ISBN: 9780226511832

Category: Mathematics

Page: 243

View: 9398

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.