**Author**: Franco Pavese,Alistair B. Forbes

**Publisher:** Springer Science & Business Media

**ISBN:** 0817648046

**Category:** Mathematics

**Page:** 486

**View:** 8640

This book provide a comprehensive set of modeling methods for data and uncertainty analysis, taking readers beyond mainstream methods and focusing on techniques with a broad range of real-world applications. The book will be useful as a textbook for graduate students, or as a training manual in the fields of calibration and testing. The work may also serve as a reference for metrologists, mathematicians, statisticians, software engineers, chemists, and other practitioners with a general interest in measurement science.

The main theme of the AMCTM 2008 conference, reinforced by the establishment of IMEKO TC21, was to provide a central opportunity for the metrology and testing community worldwide to engage with applied mathematicians, statisticians and software engineers working in the relevant fields. This review volume consists of reviewed papers prepared on the basis of the oral and poster presentations of the Conference participants. It covers all the general matters of advanced statistical modeling (e.g. uncertainty evaluation, experimental design, optimization, data analysis and applications, multiple measurands, correlation, etc.), metrology software (e.g. engineering aspects, requirements or specification, risk assessment, software development, software examination, software tools for data analysis, visualization, experiment control, best practice, standards, etc.), numerical methods (e.g. numerical data analysis, numerical simulations, inverse problems, uncertainty evaluation of numerical algorithms, applications, etc.), and data fusion techniques and design and analysis of inter-laboratory comparisons.

This volume contains original, refereed contributions by researchers from institutions and laboratories across the world that are involved in metrology and testing. They were adapted from presentations made at the eleventh edition of the Advanced Mathematical and Computational Tools in Metrology and Testing conference held at the University of Strathclyde, Glasgow, in September 2017, organized by IMEKO Technical Committee 21, the National Physical Laboratory, UK, and the University of Strathclyde. The papers present new modeling approaches, algorithms and computational methods for analyzing data from metrology systems and for evaluation of the measurement uncertainty, and describe their applications in a wide range of measurement areas.This volume is useful to all researchers, engineers and practitioners who need to characterize the capabilities of measurement systems and evaluate measurement data. Through the papers written by experts working in leading institutions, it covers the latest computational approaches and describes applications to current measurement challenges in engineering, environment and life sciences.

This volume contains original and refereed contributions from the tenth AMCTM Conference (http://www.nviim.ru/AMCTM2014) held in St. Petersburg (Russia) in September 2014 on the theme of advanced mathematical and computational tools in metrology and testing. The themes in this volume reflect the importance of the mathematical, statistical and numerical tools and techniques in metrology and testing and, also keeping the challenge promoted by the Metre Convention, to access a mutual recognition for the measurement standards. Contents:Fostering Diversity of Thought in Measurement Science (F Pavese and P De Bièvre)Polynomial Calibration Functions Revisited: Numerical and Statistical Issues (M G Cox and P Harris)Empirical Functions with Pre-Assigned Correlation Behaviour (A B Forbes)Models and Methods of Dynamic Measurements: Results Presented by St. Petersburg Metrologists (V A Granovskii)Interval Computations and Interval-Related Statistical Techniques: Estimating Uncertainty of the Results of Data Processing and Indirect Measurements (V Ya Kreinovich)Classification, Modeling and Quantification of Human Errors in Chemical Analysis (I Kuselman)Application of Nonparametric Goodness-of-Fit Tests: Problems and Solution (B Yu Lemeshko)Dynamic Measurements Based on Automatic Control Theory Approach (A L Shestakov)Models for the Treatment of Apparently Inconsistent Data (R Willink)Model for Emotion Measurements in Acoustic Signals and Its Analysis (Y Baksheeva, K Sapozhnikova and R Taymanov)Uncertainty Calculation in Gravimetric Microflow Measurements (E Batista, N Almeida, I Godinho and E Filipe)Uncertainties Propagation from Published Experimental Data to Uncertainties of Model Parameters Adjusted by the Least Squares (V I Belousov, V V Ezhela, Y V Kuyanov, S B Lugovsky, K S Lugovsky and N P Tkachenko)A New Approach for the Mathematical Alignment Machine Tool-Paths on a Five-Axis Machine and Its Effect on Surface Roughness (S Boukebbab, J Chaves-Jacob, J-M Linares and N Azzam)Goodness-of-Fit Tests for One-Shot Device Testing Data (E V Chimitova and N Balakrishan)Calculation of Coverage Intervals: Some Study Cases (A Stepanov, A Chunovkina and N Burmistrova)Application of Numerical Methods in Metrology of Electromagnetic Quantities (M Cundeva-Blajer)Calibration Method of Measuring Instruments in Operating Conditions (A A Danilov, Yu V Kucherenko, M V Berzhinskaya, N P Ordinartseva)Statistical Methods for Conformity Assessment When Dealing with Computationally Expensive Systems: Application to a Fire Engineering Case Study (S Demeyer, N Fischer, F Didieux and M Binacchi)Overview of EMRP Joint Reserch Project NEW06 "Traceability for Computationally-Intensive Metrology" (A B Forbes, I M Smith, F Härtig and K Wendt)Stable Units of Account for Economic Value Correct Measuring (N Hovanov)A Novel Approach for Uncertainty Evaluation Using Characteristic Function Theory (A B Ionov, N S Chernysheva and B P Ionov)Estimation of Test Uncertainty for TraCIM Reference Pairs (F Keller, K Wendt and F Härtig)Approaches for Assigning Numerical Uncertainty to Reference Data Pairs for Software Validation (G J P Kok and I M Smith)Uncertainty Evaluation for a Computationally Expensive Model of a Sonic Nozzle (G J P Kok and N Pelevic)EllipseFit4HC: A MATLAB Algorithm for Demodulation and Uncertainty Evaluation of the Quadrature Interferometer Signals (R Köning, G Wimmer and V Witkovský)Considerations on the Influence of Test Equipment Instability and Calibration Methods on Measurement Uncertainty of the Test Laboratory (A S Krivov, S V Marinko and I G Boyko)A Cartesian Method to Improve the Results and Save Computation Time in Bayesian Signal Analysis (G A Kyriazis)The Definition of the Reliability of Identification of Complex Organic Compounds Using HPLC and Base Chromatographic and Spectral Data (E V Kulyabina and Yu A Kudeyarov)Uncertainty Evaluation of Fluid Dynamic Simulation with One-Dimensional Riser Model by Means of Stochastic Differential Equations (E A O Lima, S B Melo, C C Dantas, F A S Teles and S Soares Bandiera)Simulation Method to Estimate the Uncertainties of ISO Specifications (J-M Linares and J M Sprauel)Adding a Virtual Layer in a Sensor Network to Improve Measurement Reliability (U Maniscalco and R Rizzo)Calibration Analysis of a Computational Optical System Applied in the Dimensional Monitoring of a Suspension Bridge (L L Martins, J M Rebordão and A S Ribeiro)Determination of Numerical Uncertainty Associated with Numerical Artefacts for Validating Coordinate Metrology Software (H D Minh, I M Smith and A B Forbes)Least-Squares Method and Type B Evaluation of Standard Uncertainty (R Palenčár, S Ďuriš, P Pavlásek, M Dovica, S Slosarčík and G Wimmer)Optimising Measurement Processes Using Automated Planning (S Parkinson, A Crampton and A P Longstaff)Software Tool for Conversion of Historical Temperature Scales (P Pavlásek, S Ďuriš, R Palenčár and A Merlone)Few Measurements, Non-Normality: A Statement on the Expanded Uncertainty (J Petry, B De Boeck, M Dobre and A Peruzzi)Quantifying Uncertainty in Accelerometer Sensitivity Studies (A L Rukhin and D J Evans)Metrological Aspects of Stopping Iterative Procedures in Inverse Problems for Static-Mode Measurements (K K Semenov)Inverse Problems in Theory and Practice of Measurements and Metrology (K K Semenov, G N Solopchenko and V Ya Kreinovich)Fuzzy Intervals as Foundation of Metrological Support for Computations with Inaccurate Data (K K Semenov, G N Solopchenko and V Ya Kreinovich)Testing Statistical Hypotheses for Generalized Semiparametric Proportional Hazards Models with Cross-Effect of Survival Functions (M A Semenova and E V Chimitova)Novel Reference Value and DOE Determination by Model Selection and Posterior Predictive Checking (K Shirono, H Tanaka, M Shiro and K Ehara)Certification of Algorithms for Constructing Calibration Curves of Measuring Instruments (T Siraya)Discrete and Fuzzy Encoding of the ECG-Signal for Multidisease Diagnostic System (V Uspenskiy, K Vorontsov, V Tselykh and V Bunakov)Application of Two Robust Methods in Inter-Laboratory Comparisons with Small Samples (E T Volodarsky and Z L Warsza)Validation of CMM Evaluation Software Using TraCIM (K Wendt, M Franke and F Härtig)Semi-Parametric Polynomial Method for Retrospective Estimation of the Change-Point of Parameters of Non-Gaussian Sequences (S V Zabolotnii and Z L Warsza)Use of a Bayesian Approach to Improve Uncertainty of Model-Based Measurements by Hybrid Multi-Tool Metrology (N-F Zhang, B M Barnes, R M Silver and H Zhou)Application of Effective Number of Observations and Effective Degrees of Freedom for Analysis of Autocorrelated Observations (A Zieba) Readership: Researchers, graduate students, academics and professionals in metrology. Key Features:Unique consolidated series of books (started in 1993) in mathematics, statistics and software specifically for metrology and testingAuthors are among the most prominent in the metrology and testing fieldsNo competing books in the same comprehensive fieldKeywords:Mathematics;Statistics;Modeling;Uncertainty;Metrology;Testing;Computational Tools;Measurement Science

Metrology is the science of measurements. It is traceable to measurement standards, thus to the concept of measurement accuracy, which is used in all natural and technical sciences, as well as in some fields of social sciences and liberal arts. The key problem is one of obtaining knowledge of the physical reality, which is observed through a prism of an assemblage of quantity properties describing the objectively-real world. One of the fundamental tasks of metrology is the development of theoretical and methodological aspects of the procedure of getting an accurate knowledge relating to objects and processes of the surrounding world. Due to the rapid development of information technologies and intelligent measurement systems and measuring instruments, as well as to the growing usage of mathematical methods in social and biological sciences, this monograph is dedicated to convey the fundamental theory.

This book constitutes thoroughly refereed revised selected papers from the First IAPR TC3 Workshop on Partially Supervised Learning, PSL 2011, held in Ulm, Germany, in September 2011. The 14 papers presented in this volume were carefully reviewed and selected for inclusion in the book, which also includes 3 invited talks. PSL 2011 dealt with methodological issues as well as real-world applications of PSL. The main methodological issues were: combination of supervised and unsupervised learning; diffusion learning; semi-supervised classification, regression, and clustering; learning with deep architectures; active learning; PSL with vague, fuzzy, or uncertain teaching signals; learning, or statistical pattern recognition; and PSL in cognitive systems. Applications of PSL included: image and signal processing; multi-modal information processing; sensor/information fusion; human computer interaction; data mining and Web mining; forensic anthropology; and bioinformatics.

Optical Measurements, Modeling, and Metrology represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Biological Systems and Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; MEMS and Nanotechnology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.

This Springer Handbook of Metrology and Testing presents the principles of Metrology – the science of measurement – and the methods and techniques of Testing – determining the characteristics of a given product – as they apply to chemical and microstructural analysis, and to the measurement and testing of materials properties and performance, including modelling and simulation. The principal motivation for this Handbook stems from the increasing demands of technology for measurement results that can be used globally. Measurements within a local laboratory or manufacturing facility must be able to be reproduced accurately anywhere in the world. The book integrates knowledge from basic sciences and engineering disciplines, compiled by experts from internationally known metrology and testing institutions, and academe, as well as from industry, and conformity-assessment and accreditation bodies. The Commission of the European Union has expressed this as there is no science without measurements, no quality without testing, and no global markets without standards.

Metrology and its applications e.g. in chemical or food analysis or in environmental monitoring are entering our daily life. This book provides a basic overview over the relevant metrological concepts like traceability, ISO uncertainties or cause-and-effect diagrams. The applications described in great detail range from progression-of-error type evaluation of the measurement uncertainty budget to complex applications like pH measurement or speciation calculations for aqueous solutions. The consequences of a measurement uncertainty concept for chemical data are outlined for geochemical modeling applied to transport in the subsurface and to nuclear waste disposal. Special sections deal with the deficits of existing thermodynamic data for these applications and with the current position of chemical metrology in respect to other quality assurance measures, e.g. ISO 900x, GLP, European and U.S.-American standards.

This volume contains original, refereed worldwide contributions. They were prompted by presentations made at the ninth AMCTM Conference held in G teborg (Sweden) in June 2011 on the theme of advanced mathematical and computational tools in metrology and also, in the title of this book series, in testing. The themes in this volume reflect the importance of the mathematical, statistical and numerical tools and techniques in metrology and testing and, also in keeping the challenge promoted by the Metre Convention, to access a mutual recognition for the measurement standards.

This volume collects the refereed contributions based on the presentations made at the Seventh Workshop on Advanced Mathematical and Computational Tools in Metrology, a forum for metrologists, mathematicians and software engineers that will encourage a more effective synthesis of skills, capabilities and resources. The volume contains articles by world renowned metrologists and mathematicians involved in measurement science and, together with the six previous volumes in this series, constitutes an authoritative source of the mathematical, statistical and software tools necessary in modern metrology. Contents: Modeling Measurement Processes in Complex Systems with Partial Differential Equations: From Heat Conduction to the Heart (M Baer et al.); Mereotipological Approach for Measurement Software (E Benoit & R Dapoigny); Data Evaluation of Key Comparisons Involving Several Artefacts (M G Cox et al.); Box-Cox Transformations Versus Robust Control Charts in Statistical Process Control (M I Gomes & F O Figueiredo); Decision Making Using Sensor's Data Fusion and Kohonen Self Organizing Maps (P S Girao et al.); Generic System Design for Measurement Databases Applied to Calibrations in Vacuum Metrology, Bio-Signals and a Template System (H Gro et al.); Repeated Measurements: Evaluation of Their Uncertainty from the Viewpoints of Classical and Bayesian Statistics (I Lira & W Woger); Detection of Outliers in Interlaboratory Testing and Some Thoughts About Multivariate Precision (C Perruchet); On Appropriate Methods for the Validation of Metrological Software (D Richter et al.); Data Analysis-A Dialogue (D S Sivia); Validation of a Virtual Sensor for Monitoring Ambient Parameters (P Ciarlini et al.); Evaluation of Standard Uncertainties in Nested Structures (E Filipe); Linking GUM and ISO 5725 (A B Forbes); Monte Carlo Study on Logical and Statistical Correlation (B Siebert et al.); Some Problems Concerning the Estimate of the Uncertainty of the Degree of Equivalence in MRA Key Comparisons (F Pavese); Preparing for a European Research Area Network in Metrology: Where are We Now? (M Kuhne et al.); and other papers. Readership: Researchers, graduate students, academics and professionals in metrology.

It is now widely recognized that measurement data should be properly analyzed to include an assessment of their associated uncertainty. Since this parameter allows for a meaningful comparison of the measurement results and for an evaluation of their reliability, its expression is important not only in the specialized field of scientific metrology, but also in industry, trade, and commerce. General rules for evaluating and expressing the uncertainty are given in the internationally accepted ISO Guide to the Expression of Uncertainty in Measurement, generally known as the GUM. Evaluating the Measurement Uncertainty details the theoretical framework on which the GUM is based and provides additional material on more advanced topics such as least-squares adjustment and Bayesian statistics. The book does not require previous knowledge other than elementary calculus and can be read as a complement to the GUM or as a stand-alone reference source. It stresses fundamental principles and illustrates their applications through numerous examples taken from many different fields of metrology. The book includes practical guidance as well as theoretical aspects, resulting in an invaluable resource for metrologists, engineers, physicists, and graduate students involved with measurements in academia and industry.

Containing more than 300 equations and nearly 500 drawings, photographs, and micrographs, this reference surveys key areas such as optical measurements and in-line calibration methods. It describes cleanroom-based measurement technology used during the manufacture of silicon integrated circuits and covers model-based, critical dimension, overlay, acoustic film thickness, dopant dose, junction depth, and electrical measurements; particle and defect detection; and flatness following chemical mechanical polishing. Providing examples of well-developed metrology capability, the book focuses on metrology for lithography, transistor, capacitor, and on-chip interconnect process technologies.

The mission of the Manufacturing Engineering Laboratory (MEL) of the National Institute of Standards and Technology (NIST) is to promote innovation and the competitiveness of U.S. manufacturing through measurement science, measurement services, and critical technical contributions to standards. The MEL is organized in five divisions: Intelligent Systems, Manufacturing Metrology, Manufacturing Systems Integration, Precision Engineering, and Fabrication Technology. A panel of experts appointed by the National Research Council (NRC) assessed the first four divisions.

Due to the continuing progress of sensor technology, the availability of 3-D cameras is already foreseeable. These cameras are capable of generating a large set of measurement points within a very short time. There are a variety of 3-D camera applications in the fields of robotics, rapid product development and digital factories. In order to not only visualize the point cloud but also to recognize 3-D object models from the point cloud and then further process them in CAD systems, efficient and stable algorithms for 3-D information processing are required. For the automatic segmentation and recognition of such geometric primitives as plane, sphere, cylinder, cone and torus in a 3-D point cloud, efficient software has recently been developed at the Fraunhofer IPA by Sung Joon Ahn. This book describes in detail the complete set of ‘best-?t’ algorithms for general curves and surfaces in space which are employed in the Fraunhofer software.

In this tribute to Benjamin Wright, former students and colleagues recall the foundational contributions he made to the theory and practice of measurement in a career spanning over five decades. Wright is recognized as the foremost proponent of the psychometric approach of Georg Rasch, a Danish mathematician, whose ideas continue to provoke controversy. Wright’s colleagues and students, and students of their students, are leaders in educational research and practice around the world. This volume relates the extent of Wright’s influence far beyond education and psychology, where his work in measurement began, into health care and the social sciences at large. The editors and contributors—all leading measurement scholars—trace the development of themes in Wright’s work, identifying the roots of today’s formative assessment methods, the integration of quantitative and qualitative data, and the contrast between scientific and statistical methods. These previously unpublished papers reflect on Wright’s lifelong passion for making measurement both more scientific and more meaningful. They recount how Wright’s insight, energy, and gregarious nature led him to produce multiple innovations in computing, estimation methods, model development, fit assessment, and reliability theory, stimulating practical applications in dozens of fields, serving on over 120 dissertation committees, and founding several professional societies. The volume includes three reprinted articles by Wright that provide insights into his early engagement with Rasch’s ideas. Psychological and Social Measurement will be welcomed by the broad international measurement community of professionals and researchers working in such diverse fields as education, psychology, health sciences, management, and metrology. Scientists working in any field involving measurement science and technology will appreciate an inside look at this seminal figure and a new perspective on the expanding conversation across the sciences about measurement and the communication of meaningful, transparent information.

Materials metrology is the measurement science used for determining materials property data. An essential element is the symbiosis between the understanding of materials behaviour and the development of suit able measurement techniques which, through the provision of stand ards, enable design engineers and plant operators to acquire materials data of appropriate precision. This book is concerned only with those aspects of materials metrology and standards that relate to the design and performance in service ofstructuresand consumerproducts. Itdoes not consider their important role in the processing ofmaterials. Theeditorsare grateful for thecommitmentand patience oftheexperts who contributed the various chapters. In addition, help from staffin the Division ofMaterials Metrology, National Physical Laboratory,inassist ing with the task of refereeing the chapters is gratefully acknowledged. The production of this book was carried out as part of the Materials Measurement Programme of underpinning research financed by the United Kingdom Department ofTrade and Industry. Brian F. Dyson Malcolm S. Loveday MarkG. Gee Division of Materials Metrology National Physical Laboratory Teddington, TWll OLW UK CHAPTER 1 Materials metrology and standards: an introduction B. F. Dyson, M. S. Loveday and M. G. Gee 1. 1 MATERIALS ASPECTS OF STRUCTURAL DESIGN Knowledge concerning the behaviour of materials has always been vital for the success of manufactured products, but never more so than at the present time.

This book is of interest to researchers in universities, research centres and industries who are involved in measurements and need advanced mathematical tools to solve their problems, and to whoever is working in the development of these mathematical tools. Advances in metrology depend on improvements in scientific and technical knowledge and in instrumentation quality as well in a better use of advanced mathematical tools and in the development of new ones. In this book scientists from both the mathematical and the metrological fields exchange their experiences. Industrial sectors such as instrumentation and software, are likely to benefit from this exchange, since metrology has a high impact on the overall quality of industrial products and applied mathematics is becoming more and more important in industrial processes. Contents:Bootstrap Algorithms and Applications (P Ciarlini)The TTRSs: 13 Oriented Constraints for Dimensioning, Tolerancing and Inspection (A Clement et al.)Graded Reference Data Sets and Performance Profiles for Testing Software Used in Metrology (M G Cox)Mathematical Methods for Data Analysis in Medical Applications (J Honerkamp)High-Dimensional Empirical Linear Prediction (H K Liu)Wavelet Methods in Signal Processing (P Maass)Software Problems in Calibration Services: A Case Study (N Greif et al.)Robust Alternatives to Least Squares (W Stahel)Magnetic Dipole Estimations for MCG-Data (E Krause)An Approximation Method for the Linearization of Tridimensional Metrology Problems (L Mathieu et al.)Quality of Experimental Data in Hydrodynamic Research (M Masia & R Penna)and other papers Readership: Applied mathematicians. keywords:Advanced Mathematical Tools;Metrology;Workshop;Proceedings;Berlin (Germany)

Gathers in one place descriptions of NIST's many programs, products, services, and research projects, along with contact names, phone numbers, and e-mail and World Wide Web addresses for further information. It is divided into chapters covering each of NIST's major operating units. In addition, each chapter on laboratory programs includes subheadings for NIST organizational division or subject areas. Covers: electronics and electrical engineering; manufacturing engineering; chemical science and technology; physics; materials science and engineering; building and fire research and information technology.