Data Mining with SPSS Modeler

Theory, Exercises and Solutions

Author: Tilo Wendler,Sören Gröttrup

Publisher: Springer

ISBN: 3319287095

Category: Mathematics

Page: 1059

View: 2736

Introducing the IBM SPSS Modeler, this book guides readers through data mining processes and presents relevant statistical methods. There is a special focus on step-by-step tutorials and well-documented examples that help demystify complex mathematical algorithms and computer programs. The variety of exercises and solutions as well as an accompanying website with data sets and SPSS Modeler streams are particularly valuable. While intended for students, the simplicity of the Modeler makes the book useful for anyone wishing to learn about basic and more advanced data mining, and put this knowledge into practice.

IBM SPSS Modeler Essentials

Effective techniques for building powerful data mining and predictive analytics solutions

Author: Jesus Salcedo,Keith McCormick

Publisher: Packt Publishing Ltd

ISBN: 1788296826

Category: Computers

Page: 238

View: 6723

Get to grips with the fundamentals of data mining and predictive analytics with IBM SPSS Modeler About This Book Get up–and-running with IBM SPSS Modeler without going into too much depth. Identify interesting relationships within your data and build effective data mining and predictive analytics solutions A quick, easy–to-follow guide to give you a fundamental understanding of SPSS Modeler, written by the best in the business Who This Book Is For This book is ideal for those who are new to SPSS Modeler and want to start using it as quickly as possible, without going into too much detail. An understanding of basic data mining concepts will be helpful, to get the best out of the book. What You Will Learn Understand the basics of data mining and familiarize yourself with Modeler's visual programming interface Import data into Modeler and learn how to properly declare metadata Obtain summary statistics and audit the quality of your data Prepare data for modeling by selecting and sorting cases, identifying and removing duplicates, combining data files, and modifying and creating fields Assess simple relationships using various statistical and graphing techniques Get an overview of the different types of models available in Modeler Build a decision tree model and assess its results Score new data and export predictions In Detail IBM SPSS Modeler allows users to quickly and efficiently use predictive analytics and gain insights from your data. With almost 25 years of history, Modeler is the most established and comprehensive Data Mining workbench available. Since it is popular in corporate settings, widely available in university settings, and highly compatible with all the latest technologies, it is the perfect way to start your Data Science and Machine Learning journey. This book takes a detailed, step-by-step approach to introducing data mining using the de facto standard process, CRISP-DM, and Modeler's easy to learn “visual programming” style. You will learn how to read data into Modeler, assess data quality, prepare your data for modeling, find interesting patterns and relationships within your data, and export your predictions. Using a single case study throughout, this intentionally short and focused book sticks to the essentials. The authors have drawn upon their decades of teaching thousands of new users, to choose those aspects of Modeler that you should learn first, so that you get off to a good start using proven best practices. This book provides an overview of various popular data modeling techniques and presents a detailed case study of how to use CHAID, a decision tree model. Assessing a model's performance is as important as building it; this book will also show you how to do that. Finally, you will see how you can score new data and export your predictions. By the end of this book, you will have a firm understanding of the basics of data mining and how to effectively use Modeler to build predictive models. Style and approach This book empowers users to build practical & accurate predictive models quickly and intuitively. With the support of the advanced analytics users can discover hidden patterns and trends.This will help users to understand the factors that influence them, enabling you to take advantage of business opportunities and mitigate risks.

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet,Gary Miner,Ken Yale

Publisher: Elsevier

ISBN: 0124166458

Category: Mathematics

Page: 822

View: 8684

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

IBM SPSS Modeler Cookbook

Author: Keith McCormick,Dean Abbott,Meta S. Brown

Publisher: Packt Pub Limited

ISBN: 9781849685467

Category: Computers

Page: 382

View: 5077

This is a practical cookbook with intermediate-advanced recipes for SPSS Modeler data analysts. It is loaded with step-by-step examples explaining the process followed by the experts.If you have had some hands-on experience with IBM SPSS Modeler and now want to go deeper and take more control over your data mining process, this is the guide for you. It is ideal for practitioners who want to break into advanced analytics.

Decision Trees and Applications with IBM SPSS Modeler

Author: Marvin L.

Publisher: N.A

ISBN: 9781540754837

Category:

Page: 180

View: 1801

A wide range of applications, such as R, SAS, MATLAB, and SPSS Statistics, provide a huge toolbox of methods to analyze large data and can be used by experts to find patterns and interesting structures in the data. Many of these tools are mainly programming languages, which assumes the analyst has deeper programming skills and an advanced background in IT and mathematics. Since this field is becoming more important, graphic user-interfaced data analysis software is starting to enter the market, providing "drag and drop" mechanisms for career changers and people who are not experts in programming or statistics.One of these easy to handle, data analytics applications is the IBM SPSS Modeler. This book is dedicated to the introduction and explanation of its data analysis power and focused in decision trees. The more important topics are the next: Decision Tree Models General Uses of Tree-Based Analysis C&RT Algorithms CHAID Algorithms QUEST Algorithms C5.0 Algorithms Decision Trees with IM SPSS Modeler Building a Decision Tree with the C5.0 Node Building a decision tree with the CHAID node The C&R Tree node and variable generation The QUEST node-Boosting & Imbalanced data Detection of diabetes-comparison of decision tree nodes Rule set and cross-validation with C5.0 The Auto Classifier Node Building a Stream with the Auto Classifier Node The Auto Classifier Model Nugget Models for credit rating with the Auto Classifier node SVM classifier Interactive decision Trees with IBM SPSS Modeler The Interactive Tree Builder Growing and Pruning the Tree Defining Custom Splits Customizing the Tree View Gains Risks The Growing Directives Generation Filter and Select Nodes Building a Tree Model Directly C&R Tree, CHAID, QUEST, and C 5.0 Models Nuggets Model Nuggets for Boosting, Bagging and Very Large Datasets

Matrix Algebra: Exercises and Solutions

Author: David A. Harville

Publisher: Springer Science & Business Media

ISBN: 1461301815

Category: Mathematics

Page: 271

View: 4478

This book contains over 300 exercises and solutions that together cover a wide variety of topics in matrix algebra. They can be used for independent study or in creating a challenging and stimulating environment that encourages active engagement in the learning process. The requisite background is some previous exposure to matrix algebra of the kind obtained in a first course. The exercises are those from an earlier book by the same author entitled Matrix Algebra From a Statistician's Perspective. They have been restated (as necessary) to stand alone, and the book includes extensive and detailed summaries of all relevant terminology and notation. The coverage includes topics of special interest and relevance in statistics and related disciplines, as well as standard topics. The overlap with exercises available from other sources is relatively small. This collection of exercises and their solutions will be a useful reference for students and researchers in matrix algebra. It will be of interest to mathematicians and statisticians.

Effective CRM Using Predictive Analytics

Author: Antonios Chorianopoulos

Publisher: John Wiley & Sons

ISBN: 1119011558

Category: BUSINESS & ECONOMICS

Page: 392

View: 3795

A step-by-step guide to data mining applications in CRM. Following a handbook approach, this book bridges the gap between analytics and their use in everyday marketing, providing guidance on solving real business problems using data mining techniques. The book is organized into three parts. Part one provides a methodological roadmap, covering both the business and the technical aspects. The data mining process is presented in detail along with specific guidelines for the development of optimized acquisition, cross/ deep/ up selling and retention campaigns, as well as effective customer segmentation schemes. Additionally, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. In part two, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. Part three is packed with real world case studies which employ the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Case studies from industries including banking, retail and telecommunications are presented in detail so as to serve as templates for developing similar applications. Key Features: Includes numerous real-world case studies which are presented step by step, demystifying the usage of data mining models and clarifying all the methodological issues. Topics are presented with the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Accompanied by a website featuring material from each case study, including datasets and relevant code. Combining data mining and business knowledge, this practical book provides all the necessary information for designing, setting up, executing and deploying data mining techniques in CRM. Effective CRM using Predictive Analytics will benefit data mining practitioners and consultants, data analysts, statisticians, and CRM officers. The book will also be useful to academics and students interested in applied data mining.

The Python Workbook

A Brief Introduction with Exercises and Solutions

Author: Ben Stephenson

Publisher: Springer

ISBN: 3319142402

Category: Computers

Page: 165

View: 359

While other textbooks devote their pages to explaining introductory programming concepts, The Python Workbook focuses exclusively on exercises, following the philosophy that computer programming is a skill best learned through experience and practice. Designed to support and encourage hands-on learning about programming, this student-friendly work contains 174 exercises, spanning a variety of academic disciplines and everyday situations. Solutions to selected exercises are also provided, supported by brief annotations that explain the technique used to solve the problem, or highlight specific points of Python syntax. No background knowledge is required to solve the exercises, beyond the material covered in a typical introductory Python programming course. Undergraduate students undergoing their first programming course and wishing to enhance their programming abilities will find the exercises and solutions provided in this book to be ideal for their needs.

Data Mining for Business Analytics

Concepts, Techniques, and Applications in R

Author: Galit Shmueli,Peter C. Bruce,Inbal Yahav,Nitin R. Patel,Kenneth C. Lichtendahl, Jr.

Publisher: John Wiley & Sons

ISBN: 1118879333

Category: Mathematics

Page: 574

View: 2101

Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: • Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students • More than a dozen case studies demonstrating applications for the data mining techniques described • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “ This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 publications including books. Peter C. Bruce is President and Founder of the Institute for Statistics Education at Statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O’Reilly). Inbal Yahav, PhD, is Professor at the Graduate School of Business Administration at Bar-Ilan University, Israel. She teaches courses in social network analysis, advanced research methods, and software quality assurance. Dr. Yahav received her PhD in Operations Research and Data Mining from the University of Maryland, College Park. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years. Kenneth C. Lichtendahl, Jr., PhD, is Associate Professor at the University of Virginia. He is the Eleanor F. and Phillip G. Rust Professor of Business Administration and teaches MBA courses in decision analysis, data analysis and optimization, and managerial quantitative analysis. He also teaches executive education courses in strategic analysis and decision-making, and managing the corporate aviation function.

Our Experience Converting an IBM Forecasting Solution from R to IBM SPSS Modeler

Author: Pitipong JS Lin,Fan Li,Yin Long,Stefa Etchegaray Garcia,Jyotishko Biswas,IBM Redbooks

Publisher: IBM Redbooks

ISBN: 0738454141

Category: Computers

Page: 82

View: 5452

This IBM® RedpaperTM publication presents the process and steps that were taken to move from an R language forecasting solution to an IBM SPSS® Modeler solution. The paper identifies the key challenges that the team faced and the lessons they learned. It describes the journey from analysis through design to key actions that were taken during development to make the conversion successful. The solution approach is described in detail so that you can learn how the team broke the original R solution architecture into logical components in order to plan for the conversion project. You see key aspects of the conversion from R to IBM SPSS Modeler and how basic parts, such as data preparation, verification, pre-screening, and automating data quality checks, are accomplished. The paper consists of three chapters: Chapter 1 introduces the business background and the problem domain. Chapter 2 explains critical technical challenges that the team confronted and solved. Chapter 3 focuses on lessons that were learned during this process and ideas that might apply to your conversion project. This paper applies to various audiences: Decision makers and IT Architects who focus on the architecture, roadmap, software platform, and total cost of ownership. Solution development team members who are involved in creating statistical/analytics-based solutions and who are familiar with R and IBM SPSS Modeler.

Data Mining and Statistics for Decision Making

Author: Stéphane Tufféry

Publisher: John Wiley & Sons

ISBN: 9780470979280

Category: Computers

Page: 716

View: 5718

Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.

Business Intelligence and Data Mining

Author: Anil Maheshwari

Publisher: Business Expert Press

ISBN: 1631571214

Category: Business & Economics

Page: 162

View: 9916

“This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.

Exploratory Data Analysis in Business and Economics

An Introduction Using SPSS, Stata, and Excel

Author: Thomas Cleff

Publisher: Springer Science & Business Media

ISBN: 3319015176

Category: Business & Economics

Page: 215

View: 608

In a world in which we are constantly surrounded by data, figures, and statistics, it is imperative to understand and to be able to use quantitative methods. Statistical models and methods are among the most important tools in economic analysis, decision-making and business planning. This textbook, “Exploratory Data Analysis in Business and Economics”, aims to familiarise students of economics and business as well as practitioners in firms with the basic principles, techniques, and applications of descriptive statistics and data analysis. Drawing on practical examples from business settings, it demonstrates the basic descriptive methods of univariate and bivariate analysis. The textbook covers a range of subject matter, from data collection and scaling to the presentation and univariate analysis of quantitative data, and also includes analytic procedures for assessing bivariate relationships. It does not confine itself to presenting descriptive statistics, but also addresses the use of computer programmes such as Excel, SPSS, and STATA, thus treating all of the topics typically covered in a university course on descriptive statistics. The German edition of this textbook is one of the “bestsellers” on the German market for literature in statistics.

Transparent Data Mining for Big and Small Data

Author: Tania Cerquitelli,Daniele Quercia,Frank Pasquale

Publisher: Springer

ISBN: 3319540246

Category: Computers

Page: 215

View: 2104

This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches.As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.

Commercial Data Mining

Processing, Analysis and Modeling for Predictive Analytics Projects

Author: David Nettleton

Publisher: Elsevier

ISBN: 012416658X

Category: Computers

Page: 304

View: 9544

Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. Illustrates cost-benefit evaluation of potential projects Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools Approachable reference can be read from cover to cover by readers of all experience levels Includes practical examples and case studies as well as actionable business insights from author's own experience

Data Mining and Predictive Analytics

Author: Daniel T. Larose,Chantal D. Larose

Publisher: John Wiley & Sons

ISBN: 1118868676

Category: Computers

Page: 824

View: 4317

Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics, Second Edition: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant.com, with exclusive password-protected instructor content Data Mining and Predictive Analytics, Second Edition will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.

Data Mining

The Textbook

Author: Charu C. Aggarwal

Publisher: Springer

ISBN: 3319141422

Category: Computers

Page: 734

View: 4251

This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago

New Advances in Statistics and Data Science

Author: Ding-Geng Chen,Zhezhen Jin,Gang Li,Yi Li,Aiyi Liu,Yichuan Zhao

Publisher: Springer

ISBN: 3319694162

Category: Mathematics

Page: 348

View: 6561

This book is comprised of the presentations delivered at the 25th ICSA Applied Statistics Symposium held at the Hyatt Regency Atlanta, on June 12-15, 2016. This symposium attracted more than 700 statisticians and data scientists working in academia, government, and industry from all over the world. The theme of this conference was the “Challenge of Big Data and Applications of Statistics,” in recognition of the advent of big data era, and the symposium offered opportunities for learning, receiving inspirations from old research ideas and for developing new ones, and for promoting further research collaborations in the data sciences. The invited contributions addressed rich topics closely related to big data analysis in the data sciences, reflecting recent advances and major challenges in statistics, business statistics, and biostatistics. Subsequently, the six editors selected 19 high-quality presentations and invited the speakers to prepare full chapters for this book, which showcases new methods in statistics and data sciences, emerging theories, and case applications from statistics, data science and interdisciplinary fields. The topics covered in the book are timely and have great impact on data sciences, identifying important directions for future research, promoting advanced statistical methods in big data science, and facilitating future collaborations across disciplines and between theory and practice.

Data Mining with IBM SPSS Modeler (IBM SPSS Clementine)

Author: César Pérez

Publisher: Createspace Independent Pub

ISBN: 9781490440699

Category: Computers

Page: 242

View: 572

This book presents the most common techniques used in data mining in a simple and easy to understand through one of the most common software solutions from among those existing in the market, in particular, IBM SPSS CLEMENTINE whose current name is IBM SPSS MODELER. Pursued as initial aim clarifying the applications concerning methods traditionally rated as difficult or dull. It seeks to present applications in data mining without having to manage high mathematical developments or complicated theoretical algorithms, which is the most common reason for the difficulties in understanding and implementation of this matter. Today data mining is used in different fields of science. Noteworthy applications in banking, and financial analysis of markets and trade, insurance and private health, in education, in industrial processes, in medicine, biology and bioengineering, telecommunications and in many other areas. Essentials to get started in data mining, regardless of the field in which it is applied, is the understanding of own concepts, task that does not require nor much less the domain of scientific apparatus involved in the matter. Later, when either necessary operative advanced, computer programs allow the results without having to decipher the mathematical development of the algorithms that are under the procedures. This book describes the simplest possible data mining concepts, so that they are understandable by readers with different training. The chapters begin describing the techniques in affordable language and then presenting the way to treat them through practical applications. An important part of each chapter are case studies completely resolved, including the interpretation of the results, which is precisely the most important thing in any matter with which they work. The book begins with an introduction to mining data and its phases. In successive chapters develop the initial phases (selection of information, data exploration, data cleansing, transformation of data, etc.). Subsequently elaborates on specific data mining, both predictive and descriptive techniques. Predictive techniques covers all models of regression, discriminant analysis, decision trees, neural networks and other techniques based on models. The descriptive techniques vary dimension reduction techniques, techniques of classification and segmentation (clustering), and exploratory data analysis techniques.

Building Big Data and Analytics Solutions in the Cloud

Author: Wei-Dong Zhu,Manav Gupta,Ven Kumar,Sujatha Perepa,Arvind Sathi,Craig Statchuk,IBM Redbooks

Publisher: IBM Redbooks

ISBN: 0738453994

Category: Computers

Page: 101

View: 2743

Big data is currently one of the most critical emerging technologies. Organizations around the world are looking to exploit the explosive growth of data to unlock previously hidden insights in the hope of creating new revenue streams, gaining operational efficiencies, and obtaining greater understanding of customer needs. It is important to think of big data and analytics together. Big data is the term used to describe the recent explosion of different types of data from disparate sources. Analytics is about examining data to derive interesting and relevant trends and patterns, which can be used to inform decisions, optimize processes, and even drive new business models. With today's deluge of data comes the problems of processing that data, obtaining the correct skills to manage and analyze that data, and establishing rules to govern the data's use and distribution. The big data technology stack is ever growing and sometimes confusing, even more so when we add the complexities of setting up big data environments with large up-front investments. Cloud computing seems to be a perfect vehicle for hosting big data workloads. However, working on big data in the cloud brings its own challenge of reconciling two contradictory design principles. Cloud computing is based on the concepts of consolidation and resource pooling, but big data systems (such as Hadoop) are built on the shared nothing principle, where each node is independent and self-sufficient. A solution architecture that can allow these mutually exclusive principles to coexist is required to truly exploit the elasticity and ease-of-use of cloud computing for big data environments. This IBM® RedpaperTM publication is aimed at chief architects, line-of-business executives, and CIOs to provide an understanding of the cloud-related challenges they face and give prescriptive guidance for how to realize the benefits of big data solutions quickly and cost-effectively.