Data Mining: Foundations and Practice

Author: Tsau Young Lin,Ying Xie,Anita Wasilewska

Publisher: Springer Science & Business Media

ISBN: 354078487X

Category: Computers

Page: 562

View: 7620

This book contains valuable studies in data mining from both foundational and practical perspectives. The foundational studies of data mining may help to lay a solid foundation for data mining as a scientific discipline, while the practical studies of data mining may lead to new data mining paradigms and algorithms. The foundational studies contained in this book focus on a broad range of subjects, including conceptual framework of data mining, data preprocessing and data mining as generalization, probability theory perspective on fuzzy systems, rough set methodology on missing values, inexact multiple-grained causal complexes, complexity of the privacy problem, logical framework for template creation and information extraction, classes of association rules, pseudo statistical independence in a contingency table, and role of sample size and determinants in granularity of contingency matrix. The practical studies contained in this book cover different fields of data mining, including rule mining, classification, clustering, text mining, Web mining, data stream mining, time series analysis, privacy preservation mining, fuzzy data mining, ensemble approaches, and kernel based approaches. We believe that the works presented in this book will encourage the study of data mining as a scientific field and spark collaboration among researchers and practitioners.

Data Mining: Foundations and Intelligent Paradigms

VOLUME 2: Statistical, Bayesian, Time Series and other Theoretical Aspects

Author: Dawn E. Holmes,Lakhmi C. Jain

Publisher: Springer Science & Business Media

ISBN: 3642232418

Category: Computers

Page: 250

View: 4940

There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 2: Core Topics including Statistical, Time-Series and Bayesian Analysis” we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.

Statistical Data Analytics

Foundations for Data Mining, Informatics, and Knowledge Discovery

Author: Walter W. Piegorsch

Publisher: John Wiley & Sons

ISBN: 1119043573

Category: Mathematics

Page: 488

View: 3230

A comprehensive introduction to statistical methods for data mining and knowledge discovery. Applications of data mining and ‘big data’ increasingly take center stage in our modern, knowledge-driven society, supported by advances in computing power, automated data acquisition, social media development and interactive, linkable internet software. This book presents a coherent, technical introduction to modern statistical learning and analytics, starting from the core foundations of statistics and probability. It includes an overview of probability and statistical distributions, basics of data manipulation and visualization, and the central components of standard statistical inferences. The majority of the text extends beyond these introductory topics, however, to supervised learning in linear regression, generalized linear models, and classification analytics. Finally, unsupervised learning via dimension reduction, cluster analysis, and market basket analysis are introduced. Extensive examples using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others. Statistical Data Analytics: Focuses on methods critically used in data mining and statistical informatics. Coherently describes the methods at an introductory level, with extensions to selected intermediate and advanced techniques. Provides informative, technical details for the highlighted methods. Employs the open-source R language as the computational vehicle – along with its burgeoning collection of online packages – to illustrate many of the analyses contained in the book. Concludes each chapter with a range of interesting and challenging homework exercises using actual data from a variety of informatic application areas. This book will appeal as a classroom or training text to intermediate and advanced undergraduates, and to beginning graduate students, with sufficient background in calculus and matrix algebra. It will also serve as a source-book on the foundations of statistical informatics and data analytics to practitioners who regularly apply statistical learning to their modern data.

Web Data Mining

Exploring Hyperlinks, Contents, and Usage Data

Author: Bing Liu

Publisher: Springer Science & Business Media

ISBN: 9783642194603

Category: Computers

Page: 624

View: 3202

Web mining aims to discover useful information and knowledge from Web hyperlinks, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semi-structured and unstructured nature of the Web data. The field has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.

Applied Data Mining for Business and Industry

Author: Paolo Giudici,Silvia Figini

Publisher: John Wiley & Sons

ISBN: 0470058862

Category: Computers

Page: 249

View: 4848

This new edition sees the inclusion of 70% new material, including eight new case studies, that brings this best selling title up to date with the many advances made in the field since its original publication. In the text all the methods described are either computational or of a statistical modelling nature; complex probabilistic models and mathematical tools are not used, so the book is accessible to a wide audience of both students and industry professionals.

Data Mining and Analysis

Fundamental Concepts and Algorithms

Author: Mohammed J. Zaki,Wagner Meira, Jr

Publisher: Cambridge University Press

ISBN: 0521766338

Category: Computers

Page: 562

View: 7679

A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.

Advances in Machine Learning II

Dedicated to the Memory of Professor Ryszard S. Michalski

Author: Jacek Koronacki

Publisher: Springer Science & Business Media

ISBN: 3642051782

Category: Computers

Page: 529

View: 7132

This is the second volume of a large two-volume editorial project we wish to dedicate to the memory of the late Professor Ryszard S. Michalski who passed away in 2007. He was one of the fathers of machine learning, an exciting and relevant, both from the practical and theoretical points of view, area in modern computer science and information technology. His research career started in the mid-1960s in Poland, in the Institute of Automation, Polish Academy of Sciences in Warsaw, Poland. He left for the USA in 1970, and since then had worked there at various universities, notably, at the University of Illinois at Urbana – Champaign and finally, until his untimely death, at George Mason University. We, the editors, had been lucky to be able to meet and collaborate with Ryszard for years, indeed some of us knew him when he was still in Poland. After he started working in the USA, he was a frequent visitor to Poland, taking part at many conferences until his death. We had also witnessed with a great personal pleasure honors and awards he had received over the years, notably when some years ago he was elected Foreign Member of the Polish Academy of Sciences among some top scientists and scholars from all over the world, including Nobel prize winners. Professor Michalski’s research results influenced very strongly the development of machine learning, data mining, and related areas. Also, he inspired many established and younger scholars and scientists all over the world. We feel very happy that so many top scientists from all over the world agreed to pay the last tribute to Professor Michalski by writing papers in their areas of research. These papers will constitute the most appropriate tribute to Professor Michalski, a devoted scholar and researcher. Moreover, we believe that they will inspire many newcomers and younger researchers in the area of broadly perceived machine learning, data analysis and data mining. The papers included in the two volumes, Machine Learning I and Machine Learning II, cover diverse topics, and various aspects of the fields involved. For convenience of the potential readers, we will now briefly summarize the contents of the particular chapters.

A Practical Guide to Data Mining for Business and Industry

Author: Andrea Ahlemeyer-Stubbe,Shirley Coleman

Publisher: John Wiley & Sons

ISBN: 1118763378

Category: Mathematics

Page: 328

View: 5505

Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.

Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications

Concepts, Methodologies, Tools, and Applications

Author: Wang, John

Publisher: IGI Global

ISBN: 159904952X

Category: Technology & Engineering

Page: 4092

View: 9506

In recent years, the science of managing and analyzing large datasets has emerged as a critical area of research. In the race to answer vital questions and make knowledgeable decisions, impressive amounts of data are now being generated at a rapid pace, increasing the opportunities and challenges associated with the ability to effectively analyze this data.

Foundations and Novel Approaches in Data Mining

Author: Tsau Young Lin,Setsuo Ohsuga,Churn-Jung Liau,Xiaohua Hu

Publisher: Springer Science & Business Media

ISBN: 9783540283157

Category: Mathematics

Page: 378

View: 740

Data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor" syndrome. Currently, application oriented engineers are only concerned with their immediate problems, which results in an ad hoc method of problem solving. Researchers, on the other hand, lack an understanding of the practical issues of data-mining for real-world problems and often concentrate on issues that are of no significance to the practitioners. In this volume, we hope to remedy problems by (1) presenting a theoretical foundation of data-mining, and (2) providing important new directions for data-mining research. A set of well respected data mining theoreticians were invited to present their views on the fundamental science of data mining. We have also called on researchers with practical data mining experiences to present new important data-mining topics.

Big Data, Data Mining, and Machine Learning

Value Creation for Business Leaders and Practitioners

Author: Jared Dean

Publisher: John Wiley & Sons

ISBN: 1118920708

Category: Computers

Page: 288

View: 3724

With big data analytics comes big insights into profitability Big data is big business. But having the data and the computational power to process it isn't nearly enough to produce meaningful results. Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners is a complete resource for technology and marketing executives looking to cut through the hype and produce real results that hit the bottom line. Providing an engaging, thorough overview of the current state of big data analytics and the growing trend toward high performance computing architectures, the book is a detail-driven look into how big data analytics can be leveraged to foster positive change and drive efficiency. With continued exponential growth in data and ever more competitive markets, businesses must adapt quickly to gain every competitive advantage available. Big data analytics can serve as the linchpin for initiatives that drive business, but only if the underlying technology and analysis is fully understood and appreciated by engaged stakeholders. This book provides a view into the topic that executives, managers, and practitioners require, and includes: A complete overview of big data and its notable characteristics Details on high performance computing architectures for analytics, massively parallel processing (MPP), and in-memory databases Comprehensive coverage of data mining, text analytics, and machine learning algorithms A discussion of explanatory and predictive modeling, and how they can be applied to decision-making processes Big Data, Data Mining, and Machine Learning provides technology and marketing executives with the complete resource that has been notably absent from the veritable libraries of published books on the topic. Take control of your organization's big data analytics to produce real results with a resource that is comprehensive in scope and light on hyperbole.

Data Mining in Biomedical Imaging, Signaling, and Systems

Author: Sumeet Dua,Rajendra Acharya U

Publisher: CRC Press

ISBN: 1439839395

Category: Computers

Page: 440

View: 2418

Data mining can help pinpoint hidden information in medical data and accurately differentiate pathological from normal data. It can help to extract hidden features from patient groups and disease states and can aid in automated decision making. Data Mining in Biomedical Imaging, Signaling, and Systems provides an in-depth examination of the biomedical and clinical applications of data mining. It supplies examples of frequently encountered heterogeneous data modalities and details the applicability of data mining approaches used to address the computational challenges in analyzing complex data. The book details feature extraction techniques and covers several critical feature descriptors. As machine learning is employed in many diagnostic applications, it covers the fundamentals, evaluation measures, and challenges of supervised and unsupervised learning methods. Both feature extraction and supervised learning are discussed as they apply to seizure-related patterns in epilepsy patients. Other specific disorders are also examined with regard to the value of data mining for refining clinical diagnoses, including depression and recurring migraines. The diagnosis and grading of the world’s fourth most serious health threat, depression, and analysis of acoustic properties that can distinguish depressed speech from normal are also described. Although a migraine is a complex neurological disorder, the text demonstrates how metabonomics can be effectively applied to clinical practice. The authors review alignment-based clustering approaches, techniques for automatic analysis of biofilm images, and applications of medical text mining, including text classification applied to medical reports. The identification and classification of two life-threatening heart abnormalities, arrhythmia and ischemia, are addressed, and a unique segmentation method for mining a 3-D imaging biomarker, exemplified by evaluation of osteoarthritis, is also presented. Given the widespread deployment of complex biomedical systems, the authors discuss system-engineering principles in a proposal for a design of reliable systems. This comprehensive volume demonstrates the broad scope of uses for data mining and includes detailed strategies and methodologies for analyzing data from biomedical images, signals, and systems.

Medical Informatics

Knowledge Management and Data Mining in Biomedicine

Author: Hsinchun Chen,Sherrilynne S. Fuller,Carol Friedman,William Hersh

Publisher: Springer Science & Business Media

ISBN: 038725739X

Category: Medical

Page: 648

View: 9826

Comprehensively presents the foundations and leading application research in medical informatics/biomedicine. The concepts and techniques are illustrated with detailed case studies. Authors are widely recognized professors and researchers in Schools of Medicine and Information Systems from the University of Arizona, University of Washington, Columbia University, and Oregon Health & Science University. Related Springer title, Shortliffe: Medical Informatics, has sold over 8000 copies The title will be positioned at the upper division and graduate level Medical Informatics course and a reference work for practitioners in the field.

Practical Graph Mining with R

Author: Nagiza F. Samatova,William Hendrix,John Jenkins,Kanchana Padmanabhan,Arpan Chakraborty

Publisher: CRC Press

ISBN: 1439860858

Category: Business & Economics

Page: 495

View: 3577

Discover Novel and Insightful Knowledge from Data Represented as a Graph Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. Develops Intuition through Easy-to-Follow Examples and Rigorous Mathematical Foundations Every algorithm and example is accompanied with R code. This allows readers to see how the algorithmic techniques correspond to the process of graph data analysis and to use the graph mining techniques in practice. The text also gives a rigorous, formal explanation of the underlying mathematics of each technique. Makes Graph Mining Accessible to Various Levels of Expertise Assuming no prior knowledge of mathematics or data mining, this self-contained book is accessible to students, researchers, and practitioners of graph data mining. It is suitable as a primary textbook for graph mining or as a supplement to a standard data mining course. It can also be used as a reference for researchers in computer, information, and computational science as well as a handy guide for data analytics practitioners.

R Data Mining

Implement data mining techniques through practical use cases and real world datasets

Author: Andrea Cirillo

Publisher: Packt Publishing Ltd

ISBN: 1787129233

Category: Computers

Page: 442

View: 3240

Mine valuable insights from your data using popular tools and techniques in R About This Book Understand the basics of data mining and why R is a perfect tool for it. Manipulate your data using popular R packages such as ggplot2, dplyr, and so on to gather valuable business insights from it. Apply effective data mining models to perform regression and classification tasks. Who This Book Is For If you are a budding data scientist, or a data analyst with a basic knowledge of R, and want to get into the intricacies of data mining in a practical manner, this is the book for you. No previous experience of data mining is required. What You Will Learn Master relevant packages such as dplyr, ggplot2 and so on for data mining Learn how to effectively organize a data mining project through the CRISP-DM methodology Implement data cleaning and validation tasks to get your data ready for data mining activities Execute Exploratory Data Analysis both the numerical and the graphical way Develop simple and multiple regression models along with logistic regression Apply basic ensemble learning techniques to join together results from different data mining models Perform text mining analysis from unstructured pdf files and textual data Produce reports to effectively communicate objectives, methods, and insights of your analyses In Detail R is widely used to leverage data mining techniques across many different industries, including finance, medicine, scientific research, and more. This book will empower you to produce and present impressive analyses from data, by selecting and implementing the appropriate data mining techniques in R. It will let you gain these powerful skills while immersing in a one of a kind data mining crime case, where you will be requested to help resolving a real fraud case affecting a commercial company, by the mean of both basic and advanced data mining techniques. While moving along the plot of the story you will effectively learn and practice on real data the various R packages commonly employed for this kind of tasks. You will also get the chance of apply some of the most popular and effective data mining models and algos, from the basic multiple linear regression to the most advanced Support Vector Machines. Unlike other data mining learning instruments, this book will effectively expose you the theory behind these models, their relevant assumptions and when they can be applied to the data you are facing. By the end of the book you will hold a new and powerful toolbox of instruments, exactly knowing when and how to employ each of them to solve your data mining problems and get the most out of your data. Finally, to let you maximize the exposure to the concepts described and the learning process, the book comes packed with a reproducible bundle of commented R scripts and a practical set of data mining models cheat sheets. Style and approach This book takes a practical, step-by-step approach to explain the concepts of data mining. Practical use-cases involving real-world datasets are used throughout the book to clearly explain theoretical concepts.

Ensemble Methods in Data Mining

Improving Accuracy Through Combining Predictions

Author: Giovanni Seni,John Elder

Publisher: Morgan & Claypool Publishers

ISBN: 1608452859

Category: Computers

Page: 126

View: 5156

Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges -- from investment timing to drug discovery, and fraud detection to recommendation systems -- where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization -- today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods -- bagging, random forests, and boosting -- to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity. This book is aimed at novice and advanced analytic researchers and practitioners -- especially in Engineering, Statistics, and Computer Science. Those with little exposure to ensembles will learn why and how to employ this breakthrough method, and advanced practitioners will gain insight into building even more powerful models. Throughout, snippets of code in R are provided to illustrate the algorithms described and to encourage the reader to try the techniques. The authors are industry experts in data mining and machine learning who are also adjunct professors and popular speakers. Although early pioneers in discovering and using ensembles, they here distill and clarify the recent groundbreaking work of leading academics (such as Jerome Friedman) to bring the benefits of ensembles to practitioners. Table of Contents: Ensembles Discovered / Predictive Learning and Decision Trees / Model Complexity, Model Selection and Regularization / Importance Sampling and the Classic Ensemble Methods / Rule Ensembles and Interpretation Statistics / Ensemble Complexity

Practical Data Mining

Author: Monte F. Hancock, Jr.

Publisher: CRC Press

ISBN: 1439868379

Category: Computers

Page: 304

View: 8190

Used by corporations, industry, and government to inform and fuel everything from focused advertising to homeland security, data mining can be a very useful tool across a wide range of applications. Unfortunately, most books on the subject are designed for the computer scientist and statistical illuminati and leave the reader largely adrift in technical waters. Revealing the lessons known to the seasoned expert, yet rarely written down for the uninitiated, Practical Data Mining explains the ins-and-outs of the detection, characterization, and exploitation of actionable patterns in data. This working field manual outlines the what, when, why, and how of data mining and offers an easy-to-follow, six-step spiral process. Catering to IT consultants, professional data analysts, and sophisticated data owners, this systematic, yet informal treatment will help readers answer questions, such as: What process model should I use to plan and execute a data mining project? How is a quantitative business case developed and assessed? What are the skills needed for different data mining projects? How do I track and evaluate data mining projects? How do I choose the best data mining techniques? Helping you avoid common mistakes, the book describes specific genres of data mining practice. Most chapters contain one or more case studies with detailed projects descriptions, methods used, challenges encountered, and results obtained. The book includes working checklists for each phase of the data mining process. Your passport to successful technical and planning discussions with management, senior scientists, and customers, these checklists lay out the right questions to ask and the right points to make from an insider’s point of view. Visit the book’s webpage for access to additional resources—including checklists, figures, PowerPoint slides, and a small set of simple prototype data mining tools. http://www.celestech.com/PracticalDataMining

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet,Gary Miner,Ken Yale

Publisher: Elsevier

ISBN: 0124166458

Category: Mathematics

Page: 822

View: 4385

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Data Mining: Concepts and Techniques

Author: Jiawei Han,Jian Pei,Micheline Kamber

Publisher: Elsevier

ISBN: 9780123814807

Category: Computers

Page: 744

View: 8369

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Data Preparation for Data Mining

Author: Dorian Pyle

Publisher: Morgan Kaufmann

ISBN: 9781558605299

Category: Computers

Page: 540

View: 4951

A guide to the importance of well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance, and provides examples of how to apply a variety of techniques in order to solve real world business problems.