Computer Vision

Algorithms and Applications

Author: Richard Szeliski

Publisher: Springer Science & Business Media

ISBN: 9781848829350

Category: Computers

Page: 812

View: 7817

Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques. Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Computer Vision

Algorithms and Applications

Author: Richard Szeliski

Publisher: Springer

ISBN: 9781848829466

Category: Computers

Page: 812

View: 5570

Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Computer Vision

Algorithms and Applications

Author: Richard Szeliski

Publisher: Springer

ISBN: 9781848829343

Category: Computers

Page: 812

View: 2034

Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Computer Vision Systems

Author: Allen Hanson

Publisher: Elsevier

ISBN: 0323151205

Category: Technology & Engineering

Page: 418

View: 5984

Computer Vision Systems is a collection of papers presented at the Workshop on Computer Vision Systems held at the University of Massachusetts in Amherst, Massachusetts, on June 1-3, 1977. Contributors discuss the breadth of problems that must be taken into account in the development of general computer vision systems. Topics covered include the application of system engineering techniques to the design of artificial intelligence systems; representation and segmentation of natural scenes; and pragmatic aspects of machine vision. Psychophysical measures of representation and interpretation are also considered. This monograph is divided into four sections: Issues and Research Strategies, Segmentation, Theory and Psychology, and Systems. The first chapter explores the problem of recovering the intrinsic characteristics of scenes from images, along with its implications for machine and human vision. The discussion then turns to special-purpose low-level vision systems that can be flexibly reconfigured as the need arises; design, development, and implementation of large systems from the human engineering point of view; and representation of visual information. The next section examines hierarchical relaxation for waveform parsing; the topology and semantics of intensity arrays; and visual images as spatial representations in active memory. The use of edge cues to recognize real-world objects is also analyzed. This text will be a useful resource for systems designers, computer engineers, and scientists as well as psychologists.

Color in Computer Vision

Fundamentals and Applications

Author: Theo Gevers,Arjan Gijsenij,Joost van de Weijer,Jan-Mark Geusebroek

Publisher: John Wiley & Sons

ISBN: 1118350065

Category: Technology & Engineering

Page: 384

View: 9021

While the field of computer vision drives many of today’s digital technologies and communication networks, the topic of color has emerged only recently in most computer vision applications. One of the most extensive works to date on color in computer vision, this book provides a complete set of tools for working with color in the field of image understanding. Based on the authors’ intense collaboration for more than a decade and drawing on the latest thinking in the field of computer science, the book integrates topics from color science and computer vision, clearly linking theories, techniques, machine learning, and applications. The fundamental basics, sample applications, and downloadable versions of the software and data sets are also included. Clear, thorough, and practical, Color in Computer Vision explains: Computer vision, including color-driven algorithms and quantitative results of various state-of-the-art methods Color science topics such as color systems, color reflection mechanisms, color invariance, and color constancy Digital image processing, including edge detection, feature extraction, image segmentation, and image transformations Signal processing techniques for the development of both image processing and machine learning Robotics and artificial intelligence, including such topics as supervised learning and classifiers for object and scene categorization Researchers and professionals in computer science, computer vision, color science, electrical engineering, and signal processing will learn how to implement color in computer vision applications and gain insight into future developments in this dynamic and expanding field.

Embedded Computer Vision

Author: Branislav Kisačanin,Shuvra S. Bhattacharyya,Sek Chai

Publisher: Springer Science & Business Media

ISBN: 1848003048

Category: Computers

Page: 284

View: 1874

As a graduate student at Ohio State in the mid-1970s, I inherited a unique c- puter vision laboratory from the doctoral research of previous students. They had designed and built an early frame-grabber to deliver digitized color video from a (very large) electronic video camera on a tripod to a mini-computer (sic) with a (huge!) disk drive—about the size of four washing machines. They had also - signed a binary image array processor and programming language, complete with a user’s guide, to facilitate designing software for this one-of-a-kindprocessor. The overall system enabled programmable real-time image processing at video rate for many operations. I had the whole lab to myself. I designed software that detected an object in the eldofview,trackeditsmovementsinrealtime,anddisplayedarunningdescription of the events in English. For example: “An object has appeared in the upper right corner...Itismovingdownandtotheleft...Nowtheobjectisgettingcloser...The object moved out of sight to the left”—about like that. The algorithms were simple, relying on a suf cient image intensity difference to separate the object from the background (a plain wall). From computer vision papers I had read, I knew that vision in general imaging conditions is much more sophisticated. But it worked, it was great fun, and I was hooked.

Computer Vision

Systems, Theory and Applications

Author: Anup Basu,Xiaobo Li

Publisher: World Scientific

ISBN: 9789810213923

Category: Computers

Page: 257

View: 4030

This book contains a selection of papers which were presented at the Vision Interface '92 Conference. It also includes several invited articles from prominent researchers in the field, suggesting future directions in Computer Vision.

Computer Vision for Assistive Healthcare

Author: Leo Marco,Giovanni Maria Farinella

Publisher: Academic Press

ISBN: 0128134461

Category: Computers

Page: 396

View: 4337

Computer Vision for Assistive Healthcare describes how advanced computer vision techniques provide tools to support common human needs, such as mental functioning, personal mobility, sensory functions, daily living activities, image processing, pattern recognition, machine learning and how language processing and computer graphics cooperate with robotics to provide such tools. Users will learn about the emerging computer vision techniques for supporting mental functioning, algorithms for analyzing human behavior, and how smart interfaces and virtual reality tools lead to the development of advanced rehabilitation systems able to perform human action and activity recognition. In addition, the book covers the technology behind intelligent wheelchairs, how computer vision technologies have the potential to assist blind people, and about the computer vision-based solutions recently employed for safety and health monitoring. Gives the state-of-the-art computer vision techniques and tools for assistive healthcare Includes a broad range of topic areas, ranging from image processing, pattern recognition, machine learning to robotics, natural language processing and computer graphics Presents a wide range of application areas, ranging from mobility, sensory substitution, and safety and security, to mental and physical rehabilitation and training Written by leading researchers in this growing field of research Describes the outstanding research challenges that still need to be tackled, giving researchers good indicators of research opportunities

Readings in Computer Vision

Issues, Problem, Principles, and Paradigms

Author: Martin A. Fischler,Oscar Firschein

Publisher: Elsevier

ISBN: 0080515819

Category: Computers

Page: 816

View: 7208

The field of computer vision combines techniques from physics, mathematics, psychology, artificial intelligence, and computer science to examine how machines might construct meaningful descriptions of their surrounding environment. The editors of this volume, prominent researchers and leaders of the SRI International AI Center Perception Group, have selected sixty papers, most published since 1980, with the viewpoint that computer vision is concerned with solving seven basic problems: Reconstructing 3D scenes from 2D images Decomposing images into their component parts Recognizing and assigning labels to scene objects Deducing and describing relations among scene objects Determining the nature of computer architectures that can support the visual function Representing abstractions in the world of computer memory Matching stored descriptions to image representation Each chapter of this volume addresses one of these problems through an introductory discussion, which identifies major ideas and summarizes approaches, and through reprints of key research papers. Two appendices on crucial assumptions in image interpretation and on parallel architectures for vision applications, a glossary of technical terms, and a comprehensive bibliography and index complete the volume.

Three-dimensional Computer Vision

A Geometric Viewpoint

Author: Olivier Faugeras

Publisher: MIT Press

ISBN: 9780262061582

Category: Computers

Page: 663

View: 427

This monograph by one of the world's leading vision researchers provides a thorough, mathematically rigorous exposition of a broad and vital area in computer vision: the problems and techniques related to three-dimensional (stereo) vision and motion. The emphasis is on using geometry to solve problems in stereo and motion, with examples from navigation and object recognition.Faugeras takes up such important problems in computer vision as projective geometry, camera calibration, edge detection, stereo vision (with many examples on real images), different kinds of representations and transformations (especially 3-D rotations), uncertainty and methods of addressing it, and object representation and recognition. His theoretical account is illustrated with the results of actual working programs.Three-Dimensional Computer Vision proposes solutions to problems arising from a specific robotics scenario in which a system must perceive and act. Moving about an unknown environment, the system has to avoid static and mobile obstacles, build models of objects and places in order to be able to recognize and locate them, and characterize its own motion and that of moving objects, by providing descriptions of the corresponding three-dimensional motions. The ideas generated, however, can be used indifferent settings, resulting in a general book on computer vision that reveals the fascinating relationship of three-dimensional geometry and the imaging process.Olivier Faugeras is Research Director of the Computer Vision and Robotics Laboratory at INRIA Sophia-Antipolis and a Professor of Applied Mathematics at the Ecole Polytechnique in Paris.

Computer Vision

Models, Learning, and Inference

Author: Simon J. D. Prince

Publisher: Cambridge University Press

ISBN: 1107011795

Category: Computers

Page: 580

View: 1228

A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.

Deep Learning for Computer Vision

Expert techniques to train advanced neural networks using TensorFlow and Keras

Author: rajalingappaa shanmugamani

Publisher: Packt Publishing Ltd

ISBN: 1788293355

Category: Computers

Page: 310

View: 3180

Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.

Computer Vision

Detection, Recognition and Reconstruction

Author: Roberto Cipolla,Sebastiano Battiato,Giovanni Maria Farinella

Publisher: Springer Science & Business Media

ISBN: 3642128475

Category: Computers

Page: 375

View: 7668

Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and tutorials held during the first two editions of the school on topics such as Recognition, Registration and Reconstruction. The chapters provide an in-depth overview of these challenging areas with key references to the existing literature.

Computer Vision

A Reference Guide

Author: N.A

Publisher: Springer

ISBN: 9780387491387

Category: Computers

Page: 898

View: 6779

This comprehensive reference provides easy access to relevant information on all aspects of Computer Vision. An A-Z format of over 240 entries offers a diverse range of topics for those seeking entry into any aspect within the broad field of Computer Vision. Over 200 Authors from both industry and academia contributed to this volume. Each entry includes synonyms, a definition and discussion of the topic, and a robust bibliography. Extensive cross-references to other entries support efficient, user-friendly searches for immediate access to relevant information. Entries were peer-reviewed by a distinguished international advisory board, both scientifically and geographically diverse, ensuring balanced coverage. Over 3700 bibliographic references for further reading enable deeper exploration into any of the topics covered. The content of Computer Vision: A Reference Guide is expository and tutorial, making the book a practical resource for students who are considering entering the field, as well as professionals in other fields who need to access this vital information but may not have the time to work their way through an entire text on their topic of interest.

Group and Crowd Behavior for Computer Vision

Author: Vittorio Murino,Marco Cristani,Shishir Shah,Silvio Savarese

Publisher: Academic Press

ISBN: 0128092807

Category: Computers

Page: 438

View: 1136

Group and Crowd Behavior for Computer Vision provides a multidisciplinary perspective on how to solve the problem of group and crowd analysis and modeling, combining insights from the social sciences with technological ideas in computer vision and pattern recognition. The book answers many unresolved issues in group and crowd behavior, with Part One providing an introduction to the problems of analyzing groups and crowds that stresses that they should not be considered as completely diverse entities, but as an aggregation of people. Part Two focuses on features and representations with the aim of recognizing the presence of groups and crowds in image and video data. It discusses low level processing methods to individuate when and where a group or crowd is placed in the scene, spanning from the use of people detectors toward more ad-hoc strategies to individuate group and crowd formations. Part Three discusses methods for analyzing the behavior of groups and the crowd once they have been detected, showing how to extract semantic information, predicting/tracking the movement of a group, the formation or disaggregation of a group/crowd and the identification of different kinds of groups/crowds depending on their behavior. The final section focuses on identifying and promoting datasets for group/crowd analysis and modeling, presenting and discussing metrics for evaluating the pros and cons of the various models and methods. This book gives computer vision researcher techniques for segmentation and grouping, tracking and reasoning for solving group and crowd modeling and analysis, as well as more general problems in computer vision and machine learning. Presents the first book to cover the topic of modeling and analysis of groups in computer vision Discusses the topics of group and crowd modeling from a cross-disciplinary perspective, using social science anthropological theories translated into computer vision algorithms Focuses on group and crowd analysis metrics Discusses real industrial systems dealing with the problem of analyzing groups and crowds

Artificial Neural Networks for Computer Vision

Author: Yi-Tong Zhou,Rama Chellappa

Publisher: Springer Science & Business Media

ISBN: 1461228344

Category: Computers

Page: 170

View: 9400

This monograph is an outgrowth of the authors' recent research on the de velopment of algorithms for several low-level vision problems using artificial neural networks. Specific problems considered are static and motion stereo, computation of optical flow, and deblurring an image. From a mathematical point of view, these inverse problems are ill-posed according to Hadamard. Researchers in computer vision have taken the "regularization" approach to these problems, where one comes up with an appropriate energy or cost function and finds a minimum. Additional constraints such as smoothness, integrability of surfaces, and preservation of discontinuities are added to the cost function explicitly or implicitly. Depending on the nature of the inver sion to be performed and the constraints, the cost function could exhibit several minima. Optimization of such nonconvex functions can be quite involved. Although progress has been made in making techniques such as simulated annealing computationally more reasonable, it is our view that one can often find satisfactory solutions using deterministic optimization algorithms.

Computer vision

a unified, biologically-inspired approach

Author: Ian Overington

Publisher: Elsevier Science Ltd

ISBN: 9780444889720

Category: Computers

Page: 423

View: 9735

This unique volume is a comprehensive, self-consistent coverage of one approach to computer vision, with many direct or implied links to human vision. The book is the result of many years spent by the author in research into the limits of human visual performance and the interactions between the observer and his environment. A wide-ranging and largely novel approach to computer vision is described. The treatment starts with a summary account of important aspects of human visual function. This is then followed by a progressive development of the computer image processing, from sub-pixel fragmentary edge determination to optical flow field analysis, local and global stereo analysis, colour imagery, edge-based region segmentation, perceptual texture segmentation and high fidelity contour form analysis. This treatment is considerably different from other more publicised approaches, and is highly recommended for those seeking a dynamic new approach to computer vision.

Computer Vision and Image Processing

Author: S. Nagabhushana

Publisher: New Age International

ISBN: 9788122416428

Category: Computer vision

Page: 242

View: 2159

An Attempt Has Been Made To Explain The Concepts Of Computer Vision And Image Processing In A Simple Manner With The Help Of Number Of Algorithms And Live Examples. I Sincerely Hope That The Book Will Give Complete Information About Computer Vision And Image Processing To The Reader.It Not Only Serves As An Introductory Academic Text, But Also Helps Practicing Professionals To Implement Various Computer Vision And Image Processing Algorithms In Real-Time Projects.

Computer Vision and Image Processing

Author: Linda Shapiro

Publisher: Academic Press

ISBN: 0323141560

Category: Technology & Engineering

Page: 638

View: 5026

Computer Vision and Image Processing contains review papers from the Computer Vision, Graphics, and Image Processing volume covering a large variety of vision-related topics. Organized into five parts encompassing 26 chapters, the book covers topics on image-level operations and architectures; image representation and recognition; and three-dimensional imaging. The introductory part of this book is concerned with the end-to-end performance of image gathering and processing for high-resolution edge detection. It proposes methods using mathematical morphology to provide a complete edge detection process that may be used with any slope approximating operator. This part also discusses the automatic control of low-level robot vision, presents an image partitioning method suited for parallel implementation, and describes invariant architectures for low-level vision. The subsequent two sections present significant topics on image representation and recognition. Topics covered include the use of the primitives chain code; the geometric properties of the generalized cone; efficient rendering and structural-statistical character recognition algorithms; multi-level thresholding for image segmentation; knowledge-based object recognition system; and shape decomposition method based on perceptual structure. The fourth part describes a rule-based expert system for recovering three-dimensional shape and orientation. A procedure of intensity-guided range sensing to gain insights on the concept of cooperative-and-iterative strategy is also presented in this part. The concluding part contains supplementary texts on texture segmentation using topographic labels and an improved algorithm for labeling connected components in a binary image. Additional algorithms for three-dimensional motion parameter determination and surface tracking in three-dimensional binary images are also provided.

Computer Vision

Principles, Algorithms, Applications, Learning

Author: E. R. Davies

Publisher: Academic Press

ISBN: 012809575X

Category: Computers

Page: 900

View: 1471

Computer Vision: Principles, Algorithms, Applications, Learning (previously entitled Computer and Machine Vision) clearly and systematically presents the basic methodology of computer vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fifth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date text suitable for undergraduate and graduate students, researchers and R&D engineers working in this vibrant subject. See an interview with the author explaining his approach to teaching and learning computer vision - http://scitechconnect.elsevier.com/computer-vision/ Three new chapters on Machine Learning emphasise the way the subject has been developing; Two chapters cover Basic Classification Concepts and Probabilistic Models; and the The third covers the principles of Deep Learning Networks and shows their impact on computer vision, reflected in a new chapter Face Detection and Recognition. A new chapter on Object Segmentation and Shape Models reflects the methodology of machine learning and gives practical demonstrations of its application. In-depth discussions have been included on geometric transformations, the EM algorithm, boosting, semantic segmentation, face frontalisation, RNNs and other key topics. Examples and applications—including the location of biscuits, foreign bodies, faces, eyes, road lanes, surveillance, vehicles and pedestrians—give the ‘ins and outs’ of developing real-world vision systems, showing the realities of practical implementation. Necessary mathematics and essential theory are made approachable by careful explanations and well-illustrated examples. The ‘recent developments’ sections included in each chapter aim to bring students and practitioners up to date with this fast-moving subject. Tailored programming examples—code, methods, illustrations, tasks, hints and solutions (mainly involving MATLAB and C++)