*An Introduction*

**Author**: Herbert Edelsbrunner,John Harer

**Publisher:** American Mathematical Soc.

**ISBN:** 0821849255

**Category:** Mathematics

**Page:** 241

**View:** 4198

Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.

Based on the first Workshop for Women in Computational Topology that took place in 2016, this volume assembles new research and applications in computational topology. Featured articles range over the breadth of the discipline, including topics such as surface reconstruction, topological data analysis, persistent homology, algorithms, and surface-embedded graphs. Applications in graphics, medical imaging, and GIS are discussed throughout the book. Four of the papers in this volume are the product of working groups that were established and developed during the workshop. Additional papers were also solicited from the broader Women in Computational Topology network. The volume is accessible to a broad range of researchers, both within the field of computational topology and in related disciplines such as statistics, computational biology, and machine learning.

What is the shape of data? How do we describe flows? Can we count by integrating? How do we plan with uncertainty? What is the most compact representation? These questions, while unrelated, become similar when recast into a computational setting. Our input is a set of finite, discrete, noisy samples that describes an abstract space. Our goal is to compute qualitative features of the unknown space. It turns out that topology is sufficiently tolerant to provide us with robust tools. This volume is based on lectures delivered at the 2011 AMS Short Course on Computational Topology, held January 4-5, 2011 in New Orleans, Louisiana. The aim of the volume is to provide a broad introduction to recent techniques from applied and computational topology. Afra Zomorodian focuses on topological data analysis via efficient construction of combinatorial structures and recent theories of persistence. Marian Mrozek analyzes asymptotic behavior of dynamical systems via efficient computation of cubical homology. Justin Curry, Robert Ghrist, and Michael Robinson present Euler Calculus, an integral calculus based on the Euler characteristic, and apply it to sensor and network data aggregation. Michael Erdmann explores the relationship of topology, planning, and probability with the strategy complex. Jeff Erickson surveys algorithms and hardness results for topological optimization problems.

This book constitutes the proceedings of the 6th International Workshop on Computational Topology in Image Context, CTIC 2016, held in Marseille, France, in June 2016. The 24 papers presented in this volume were carefully reviewed and selected from 35 submissions. Additionally, this volume contains 2 invited papers. CTIC covers a wide range of topics such as: topological invariants and their computation, homology, cohomology, linking number, fundamental groups; algorithm optimization in discrete geometry, transfer of mathematical tools, parallel computation in multi-dimensional volume context, hierarchical approaches; experimental evaluation of algorithms and heuristics; combinatorial or multi-resolution models; discrete or computational topology; geometric modeling guided by topological constraints; computational topological dynamics; and use of topological information in discrete geometry applications.

This book constitutes the proceedings of the 4th International Workshop on Computational Topology in Image Context, CTIC 2012, held in Bertinoro, Italy, in May 2012. The 16 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They focus on the topology and computation in image context. The workshop is devoted to computational methods using topology for the analysis and comparison of images. The involved research fields comprise computational topology and geometry, discrete topology and geometry, geometrical modeling, algebraic topology for image applications, and any other field involving a geometric-topological approach to image processing.

The emerging field of computational topology utilizes theory from topology and the power of computing to solve problems in diverse fields. Recent applications include computer graphics, computer-aided design (CAD), and structural biology, all of which involve understanding the intrinsic shape of some real or abstract space. A primary goal of this book is to present basic concepts from topology and Morse theory to enable a non-specialist to grasp and participate in current research in computational topology. The author gives a self-contained presentation of the mathematical concepts from a computer scientist's point of view, combining point set topology, algebraic topology, group theory, differential manifolds, and Morse theory. He also presents some recent advances in the area, including topological persistence and hierarchical Morse complexes. Throughout, the focus is on computational challenges and on presenting algorithms and data structures when appropriate.

This monograph presents a short course in computational geometry and topology. In the first part the book covers Voronoi diagrams and Delaunay triangulations, then it presents the theory of alpha complexes which play a crucial role in biology. The central part of the book is the homology theory and their computation, including the theory of persistence which is indispensable for applications, e.g. shape reconstruction. The target audience comprises researchers and practitioners in mathematics, biology, neuroscience and computer science, but the book may also be beneficial to graduate students of these fields.

The book combines topics in mathematics (geometry and topology), computer science (algorithms), and engineering (mesh generation). The original motivation for these topics was the difficulty faced (both conceptually and in the technical execution) in any attempt to combine elements of combinatorial and of numerical algorithms. Mesh generation is a topic where a meaningful combination of these different approaches to problem solving is inevitable. The book develops methods from both areas that are amenable to combination, and explains recent breakthrough solutions to meshing that fit into this category.The book should be an ideal graduate text for courses on mesh generation. The specific material is selected giving preference to topics that are elementary, attractive, lend themselves to teaching, useful, and interesting.

Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.

Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information. Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known. This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations. Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.

Using a geometric perspective, Protein Geometry, Classification, Topology, and Symmetry reviews and analyzes the structural principals of proteins with the goal of revealing the underlying regularities in their construction. It also reviews computer methods for structure analysis and the automatic comparison and classification of these structures with an analysis of the statistical significance of comparing different shapes. Following an analysis of the current state of protein classification, the authors explore more abstract geometric and topological representations, including the occurrence of knotted topologies. The book concludes with a consideration of the origin of higher-level symmetries in protein structure. The authors focus on simple geometric methods that are deterministic rather than probabilistic and on the more abstract simplifications of protein structure that allow a better understanding of the overall fold of the structure. Most of the methods described in this book have corresponding computer programs. These can be found (as C source code) at the ftp site of the Division of Mathematical Biology at the National Institute for Medical Research. This collection of ideas contains pedagogical material that make it ideal for post-graduate courses as well as new ideas and results essential for researchers investigating protein structures.

Ever since Lorensen and Cline published their paper on the Marching Cubes algorithm, isosurfaces have been a standard technique for the visualization of 3D volumetric data. Yet there is no book exclusively devoted to isosurfaces. Isosurfaces: Geometry, Topology, and Algorithms represents the first book to focus on basic algorithms for isosurface construction. It also gives a rigorous mathematical perspective on some of the algorithms and results. In color throughout, the book covers the Marching Cubes algorithm and variants, dual contouring algorithms, multilinear interpolation, multiresolution isosurface extraction, isosurfaces in four dimensions, interval volumes, and contour trees. It also describes data structures for faster isosurface extraction as well as methods for selecting significant isovalues. For designers of visualization software, the book presents an organized overview of the various algorithms associated with isosurfaces. For graduate students, it provides a solid introduction to research in this area. For visualization researchers, the book serves as a reference to the vast literature on isosurfaces.

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

This volume is a collection of surveys of research problems in topology and its applications. The topics covered include general topology, set-theoretic topology, continuum theory, topological algebra, dynamical systems, computational topology and functional analysis. * New surveys of research problems in topology * New perspectives on classic problems * Representative surveys of research groups from all around the world

The aim of this volume is to give an introduction and overview to differential topology, differential geometry and computational geometry with an emphasis on some interconnections between these three domains of mathematics. The chapters give the background required to begin research in these fields or at their interfaces. They introduce new research domains and both old and new conjectures in these different subjects show some interaction between other sciences close to mathematics. Topics discussed are; the basis of differential topology and combinatorial topology, the link between differential geometry and topology, Riemanian geometry (Levi-Civita connextion, curvature tensor, geodesic, completeness and curvature tensor), characteristic classes (to associate every fibre bundle with isomorphic fiber bundles), the link between differential geometry and the geometry of non smooth objects, computational geometry and concrete applications such as structural geology and graphism.

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in ?elds as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed signi?cantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young ?eld of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Combining physics, mathematics and computer science, topological quantum computation is a rapidly expanding research area focused on the exploration of quantum evolutions that are immune to errors. In this book, the author presents a variety of different topics developed together for the first time, forming an excellent introduction to topological quantum computation. The makings of anyonic systems, their properties and their computational power are presented in a pedagogical way. Relevant calculations are fully explained, and numerous worked examples and exercises support and aid understanding. Special emphasis is given to the motivation and physical intuition behind every mathematical concept. Demystifying difficult topics by using accessible language, this book has broad appeal and is ideal for graduate students and researchers from various disciplines who want to get into this new and exciting research field.

Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises