Complex Analysis and Differential Equations

Author: Luis Barreira,Claudia Valls

Publisher: Springer Science & Business Media

ISBN: 1447140087

Category: Mathematics

Page: 415

View: 2025

This text provides an accessible, self-contained and rigorous introduction to complex analysis and differential equations. Topics covered include holomorphic functions, Fourier series, ordinary and partial differential equations. The text is divided into two parts: part one focuses on complex analysis and part two on differential equations. Each part can be read independently, so in essence this text offers two books in one. In the second part of the book, some emphasis is given to the application of complex analysis to differential equations. Half of the book consists of approximately 200 worked out problems, carefully prepared for each part of theory, plus 200 exercises of variable levels of difficulty. Tailored to any course giving the first introduction to complex analysis or differential equations, this text assumes only a basic knowledge of linear algebra and differential and integral calculus. Moreover, the large number of examples, worked out problems and exercises makes this the ideal book for independent study.

Complex Analysis

Author: John M. Howie

Publisher: Springer Science & Business Media

ISBN: 1447100271

Category: Mathematics

Page: 260

View: 7800

Complex analysis can be a difficult subject and many introductory texts are just too ambitious for today’s students. This book takes a lower starting point than is traditional and concentrates on explaining the key ideas through worked examples and informal explanations, rather than through "dry" theory.

Twenty-One Lectures on Complex Analysis

A First Course

Author: Alexander Isaev

Publisher: Springer

ISBN: 3319681702

Category: Mathematics

Page: 194

View: 416

At its core, this concise textbook presents standard material for a first course in complex analysis at the advanced undergraduate level. This distinctive text will prove most rewarding for students who have a genuine passion for mathematics as well as certain mathematical maturity. Primarily aimed at undergraduates with working knowledge of real analysis and metric spaces, this book can also be used to instruct a graduate course. The text uses a conversational style with topics purposefully apportioned into 21 lectures, providing a suitable format for either independent study or lecture-based teaching. Instructors are invited to rearrange the order of topics according to their own vision. A clear and rigorous exposition is supported by engaging examples and exercises unique to each lecture; a large number of exercises contain useful calculation problems. Hints are given for a selection of the more difficult exercises. This text furnishes the reader with a means of learning complex analysis as well as a subtle introduction to careful mathematical reasoning. To guarantee a student’s progression, more advanced topics are spread out over several lectures. This text is based on a one-semester (12 week) undergraduate course in complex analysis that the author has taught at the Australian National University for over twenty years. Most of the principal facts are deduced from Cauchy’s Independence of Homotopy Theorem allowing us to obtain a clean derivation of Cauchy’s Integral Theorem and Cauchy’s Integral Formula. Setting the tone for the entire book, the material begins with a proof of the Fundamental Theorem of Algebra to demonstrate the power of complex numbers and concludes with a proof of another major milestone, the Riemann Mapping Theorem, which is rarely part of a one-semester undergraduate course.

The Real and the Complex: A History of Analysis in the 19th Century

Author: Jeremy Gray

Publisher: Springer

ISBN: 3319237152

Category: Mathematics

Page: 350

View: 8389

This book contains a history of real and complex analysis in the nineteenth century, from the work of Lagrange and Fourier to the origins of set theory and the modern foundations of analysis. It studies the works of many contributors including Gauss, Cauchy, Riemann, and Weierstrass. This book is unique owing to the treatment of real and complex analysis as overlapping, inter-related subjects, in keeping with how they were seen at the time. It is suitable as a course in the history of mathematics for students who have studied an introductory course in analysis, and will enrich any course in undergraduate real or complex analysis.

Real Analysis

Author: John M. Howie

Publisher: Springer Science & Business Media

ISBN: 9781852333140

Category: Mathematics

Page: 276

View: 8913

Understanding the concepts and methods of real analysis is an essential skill for every undergraduate mathematics student. Written in an easy-to-read style, Real Analysis is a comprehensive introduction to this core subject and is ideal for self-study or as a course textbook for first and second-year undergraduates. Combining an informal style with precision mathematics, Real Analysis covers all the key topics with fully worked examples and exercises with solutions. Featuring: Sequences and series - considering the central notion of a limit.- Continuous functions.- Differentiation.- Integration.- Logarithmic and exponential functions.- Uniform convergence.- Circular functions All these concepts and techniques are deployed in examples in the final chapter to provide the student with a thorough understanding of this challenging subject.

From Real to Complex Analysis

Author: R. H. Dyer,D. E. Edmunds

Publisher: Springer

ISBN: 3319062093

Category: Mathematics

Page: 332

View: 6888

The purpose of this book is to provide an integrated course in real and complex analysis for those who have already taken a preliminary course in real analysis. It particularly emphasises the interplay between analysis and topology. Beginning with the theory of the Riemann integral (and its improper extension) on the real line, the fundamentals of metric spaces are then developed, with special attention being paid to connectedness, simple connectedness and various forms of homotopy. The final chapter develops the theory of complex analysis, in which emphasis is placed on the argument, the winding number, and a general (homology) version of Cauchy's theorem which is proved using the approach due to Dixon. Special features are the inclusion of proofs of Montel's theorem, the Riemann mapping theorem and the Jordan curve theorem that arise naturally from the earlier development. Extensive exercises are included in each of the chapters, detailed solutions of the majority of which are given at the end. From Real to Complex Analysis is aimed at senior undergraduates and beginning graduate students in mathematics. It offers a sound grounding in analysis; in particular, it gives a solid base in complex analysis from which progress to more advanced topics may be made.

Linear Functional Analysis

Author: Bryan Rynne,M.A. Youngson

Publisher: Springer Science & Business Media

ISBN: 1447136551

Category: Mathematics

Page: 273

View: 4860

This book provides an introduction to the ideas and methods of linear func tional analysis at a level appropriate to the final year of an undergraduate course at a British university. The prerequisites for reading it are a standard undergraduate knowledge of linear algebra and real analysis (including the the ory of metric spaces). Part of the development of functional analysis can be traced to attempts to find a suitable framework in which to discuss differential and integral equa tions. Often, the appropriate setting turned out to be a vector space of real or complex-valued functions defined on some set. In general, such a vector space is infinite-dimensional. This leads to difficulties in that, although many of the elementary properties of finite-dimensional vector spaces hold in infinite dimensional vector spaces, many others do not. For example, in general infinite dimensional vector spaces there is no framework in which to make sense of an alytic concepts such as convergence and continuity. Nevertheless, on the spaces of most interest to us there is often a norm (which extends the idea of the length of a vector to a somewhat more abstract setting). Since a norm on a vector space gives rise to a metric on the space, it is now possible to do analysis in the space. As real or complex-valued functions are often called functionals, the term functional analysis came to be used for this topic. We now briefly outline the contents of the book.

Complex Analysis

Author: Joseph Bak,Donald J. Newman

Publisher: Springer Science & Business Media

ISBN: 9781441972880

Category: Mathematics

Page: 328

View: 5650

This unusual and lively textbook offers a clear and intuitive approach to the classical and beautiful theory of complex variables. With very little dependence on advanced concepts from several-variable calculus and topology, the text focuses on the authentic complex-variable ideas and techniques. Accessible to students at their early stages of mathematical study, this full first year course in complex analysis offers new and interesting motivations for classical results and introduces related topics stressing motivation and technique. Numerous illustrations, examples, and now 300 exercises, enrich the text. Students who master this textbook will emerge with an excellent grounding in complex analysis, and a solid understanding of its wide applicability.

Groups, Rings and Fields

Author: David A.R. Wallace

Publisher: Springer Science & Business Media

ISBN: 1447104250

Category: Mathematics

Page: 248

View: 475

This is a basic introduction to modern algebra, providing a solid understanding of the axiomatic treatment of groups and then rings, aiming to promote a feeling for the evolutionary and historical development of the subject. It includes problems and fully worked solutions, enabling readers to master the subject rather than simply observing it.

Elementary Number Theory

Author: Gareth A. Jones,Josephine M. Jones

Publisher: Springer Science & Business Media

ISBN: 144710613X

Category: Mathematics

Page: 302

View: 4913

An undergraduate-level introduction to number theory, with the emphasis on fully explained proofs and examples. Exercises, together with their solutions are integrated into the text, and the first few chapters assume only basic school algebra. Elementary ideas about groups and rings are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares. In particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.

An Introduction to Laplace Transforms and Fourier Series

Author: Phil Dyke

Publisher: Springer Science & Business Media

ISBN: 1447163958

Category: Mathematics

Page: 318

View: 2139

In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and biological modelling requiring techniques for solving initial value problems.

Essential Topology

Author: Martin D. Crossley

Publisher: Springer Science & Business Media

ISBN: 9781852337827

Category: Mathematics

Page: 224

View: 8183

This thoroughly modern introduction to undergraduate topology brings the most exciting and useful aspects of modern topology to the reader. Containing all the key results of basic topology, this book concentrates on uniting the most interesting aspects of the subject with aspects that are most useful to research. It is suitable for self-study, and will leave the reader both motivated and well prepared for further study.

Complex Analysis

Author: Theodore W. Gamelin

Publisher: Springer Science & Business Media

ISBN: 0387216073

Category: Mathematics

Page: 480

View: 2247

An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.

Introductory Mathematics: Algebra and Analysis

Author: Geoffrey C. Smith

Publisher: Springer Science & Business Media

ISBN: 1447106199

Category: Mathematics

Page: 215

View: 8587

This text provides a lively introduction to pure mathematics. It begins with sets, functions and relations, proof by induction and contradiction, complex numbers, vectors and matrices, and provides a brief introduction to group theory. It moves onto analysis, providing a gentle introduction to epsilon-delta technology and finishes with continuity and functions. The book features numerous exercises of varying difficulty throughout the text.

Basic Linear Algebra

Author: Thomas S. Blyth,Edmund F. Robertson

Publisher: Springer Science & Business Media

ISBN: 1447134966

Category: Mathematics

Page: 201

View: 2477

Basic Linear Algebra is a text for first year students, working from concrete examples towards abstract theorems, via tutorial-type exercises. The book explains the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations, and complex numbers. Linear equations are treated via Hermite normal forms, which provides a successful and concrete explanation of the notion of linear independence. Another highlight is the connection between linear mappings and matrices, leading to the change of basis theorem which opens the door to the notion of similarity. The authors are well known algebraists with considerable experience of teaching introductory courses on linear algebra to students at St Andrews. This book is based on one previously published by Chapman and Hall, but it has been extensively updated to include further explanatory text and fully worked solutions to the exercises that all 1st year students should be able to answer.

Complex Analysis

Author: Serge Lang

Publisher: Springer

ISBN: 3642592732

Category: Mathematics

Page: 458

View: 5049

The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. The first half, more or less, can be used for a one-semester course addressed to undergraduates. The second half can be used for a second semester, at either level. Somewhat more material has been included than can be covered at leisure in one or two terms, to give opportunities for the instructor to exercise individual taste, and to lead the course in whatever directions strikes the instructor's fancy at the time as well as extra read ing material for students on their own. A large number of routine exer cises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc. ) and I would recommend to anyone to look through them. More recent texts have emphasized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex analysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues.

Galois Theory Through Exercises

Author: Juliusz Brzeziński

Publisher: Springer

ISBN: 331972326X

Category: Mathematics

Page: 293

View: 4640

This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.

Hyperbolic Geometry

Author: James W. Anderson

Publisher: Springer Science & Business Media

ISBN: 1447139879

Category: Mathematics

Page: 230

View: 5021

Thoroughly updated, featuring new material on important topics such as hyperbolic geometry in higher dimensions and generalizations of hyperbolicity Includes full solutions for all exercises Successful first edition sold over 800 copies in North America