Characteristic Classes. (AM-76)

Author: John Milnor,James D. Stasheff

Publisher: Princeton University Press

ISBN: 140088182X

Category: Mathematics

Page: 340

View: 9626

The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Morse Theory. (AM-51)

Author: John Milnor

Publisher: Princeton University Press

ISBN: 1400881803

Category: Mathematics

Page: 160

View: 8014

One of the most cited books in mathematics, John Milnor's exposition of Morse theory has been the most important book on the subject for more than forty years. Morse theory was developed in the 1920s by mathematician Marston Morse. (Morse was on the faculty of the Institute for Advanced Study, and Princeton published his Topological Methods in the Theory of Functions of a Complex Variable in the Annals of Mathematics Studies series in 1947.) One classical application of Morse theory includes the attempt to understand, with only limited information, the large-scale structure of an object. This kind of problem occurs in mathematical physics, dynamic systems, and mechanical engineering. Morse theory has received much attention in the last two decades as a result of a famous paper in which theoretical physicist Edward Witten relates Morse theory to quantum field theory. Milnor was awarded the Fields Medal (the mathematical equivalent of a Nobel Prize) in 1962 for his work in differential topology. He has since received the National Medal of Science (1967) and the Steele Prize from the American Mathematical Society twice (1982 and 2004) in recognition of his explanations of mathematical concepts across a wide range of scienti.c disciplines. The citation reads, "The phrase sublime elegance is rarely associated with mathematical exposition, but it applies to all of Milnor's writings. Reading his books, one is struck with the ease with which the subject is unfolding and it only becomes apparent after re.ection that this ease is the mark of a master.? Milnor has published five books with Princeton University Press.


Author: Michael Atiyah

Publisher: CRC Press

ISBN: 0429973179

Category: Mathematics

Page: 240

View: 757

These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.

Topology from the Differentiable Viewpoint

Author: John Willard Milnor

Publisher: Princeton University Press

ISBN: 9780691048338

Category: Mathematics

Page: 64

View: 2832

This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.

The Calculi of Lambda Conversion. (AM-6)

Author: Alonzo Church

Publisher: Princeton University Press

ISBN: 1400881935

Category: Mathematics

Page: 77

View: 2947

The description for this book, The Calculi of Lambda Conversion. (AM-6), Volume 6, will be forthcoming.

A User's Guide to Algebraic Topology

Author: C.T. Dodson,P.E. Parker

Publisher: Springer Science & Business Media

ISBN: 9780792342939

Category: Mathematics

Page: 410

View: 8292

This book arose from courses taught by the authors, and is designed for both instructional and reference use during and after a first course in algebraic topology. It is a handbook for users who want to calculate, but whose main interests are in applications using the current literature, rather than in developing the theory. Typical areas of applications are differential geometry and theoretical physics. We start gently, with numerous pictures to illustrate the fundamental ideas and constructions in homotopy theory that are needed in later chapters. We show how to calculate homotopy groups, homology groups and cohomology rings of most of the major theories, exact homotopy sequences of fibrations, some important spectral sequences, and all the obstructions that we can compute from these. Our approach is to mix illustrative examples with those proofs that actually develop transferable calculational aids. We give extensive appendices with notes on background material, extensive tables of data, and a thorough index. Audience: Graduate students and professionals in mathematics and physics.

Spin Geometry (PMS-38)

Author: H. Blaine Lawson,Marie-Louise Michelsohn

Publisher: Princeton University Press

ISBN: 1400883911

Category: Mathematics

Page: 440

View: 8103

This book offers a systematic and comprehensive presentation of the concepts of a spin manifold, spinor fields, Dirac operators, and A-genera, which, over the last two decades, have come to play a significant role in many areas of modern mathematics. Since the deeper applications of these ideas require various general forms of the Atiyah-Singer Index Theorem, the theorems and their proofs, together with all prerequisite material, are examined here in detail. The exposition is richly embroidered with examples and applications to a wide spectrum of problems in differential geometry, topology, and mathematical physics. The authors consistently use Clifford algebras and their representations in this exposition. Clifford multiplication and Dirac operator identities are even used in place of the standard tensor calculus. This unique approach unifies all the standard elliptic operators in geometry and brings fresh insights into curvature calculations. The fundamental relationships of Clifford modules to such topics as the theory of Lie groups, K-theory, KR-theory, and Bott Periodicity also receive careful consideration. A special feature of this book is the development of the theory of Cl-linear elliptic operators and the associated index theorem, which connects certain subtle spin-corbordism invariants to classical questions in geometry and has led to some of the most profound relations known between the curvature and topology of manifolds.

The Topology of 4-Manifolds

Author: Robion C. Kirby

Publisher: Springer

ISBN: 354046171X

Category: Mathematics

Page: 112

View: 569

This book presents the classical theorems about simply connected smooth 4-manifolds: intersection forms and homotopy type, oriented and spin bordism, the index theorem, Wall's diffeomorphisms and h-cobordism, and Rohlin's theorem. Most of the proofs are new or are returbishings of post proofs; all are geometric and make us of handlebody theory. There is a new proof of Rohlin's theorem using spin structures. There is an introduction to Casson handles and Freedman's work including a chapter of unpublished proofs on exotic R4's. The reader needs an understanding of smooth manifolds and characteristic classes in low dimensions. The book should be useful to beginning researchers in 4-manifolds.

Algebraic Topology

Author: Edwin H. Spanier

Publisher: Springer Science & Business Media

ISBN: 1468493221

Category: Mathematics

Page: 548

View: 3080

This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.

Chow Rings, Decomposition of the Diagonal, and the Topology of Families (AM-187)

Author: Claire Voisin

Publisher: Princeton University Press

ISBN: 1400850533

Category: Mathematics

Page: 176

View: 5000

In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.

Surveys on Surgery Theory (AM-145), Volume 1

Papers Dedicated to C. T. C. Wall. (AM-145)

Author: Sylvain Cappell,Andrew Ranicki,Jonathan Rosenberg

Publisher: Princeton University Press

ISBN: 1400865190

Category: Mathematics

Page: 448

View: 7312

Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey. The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation and produce a comprehensive book on the subject. Experts have written state-of-the-art reports that will be of broad interest to all those interested in topology, not only graduate students and mathematicians, but mathematical physicists as well. Contributors include J. Milnor, S. Novikov, W. Browder, T. Lance, E. Brown, M. Kreck, J. Klein, M. Davis, J. Davis, I. Hambleton, L. Taylor, C. Stark, E. Pedersen, W. Mio, J. Levine, K. Orr, J. Roe, J. Milgram, and C. Thomas.

Invitations to Geometry and Topology

Author: Martin R. Bridson

Publisher: Oxford University Press on Demand

ISBN: 9780198507727

Category: Mathematics

Page: 327

View: 3138

This volume presents an array of topics that introduce the reader to key ideas in active areas in geometry and topology. The material is presented in a way that both graduate students and researchers should find accessible and enticing. The topics covered range from Morse theory and complex geometry theory to geometric group theory, and are accompanied by exercises that are designed to deepen the reader's understanding and to guide them in exciting directions for future investigation. The editors, M.R. Bridson and S.M. Salamon, have each written an article and are accompanied by A.J. Berrick; M.C. Crabb and A.J.B Potter; M. Eastwood and J. Sawon; M.A. Guest; N.J. Hitchin and J.Seade.

Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127)

Author: Gerd Faltings

Publisher: Princeton University Press

ISBN: 1400882478

Category: Mathematics

Page: 118

View: 6827

The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.

Modular Forms and Special Cycles on Shimura Curves. (AM-161)

Author: Stephen S. Kudla,Michael Rapoport,Tonghai Yang

Publisher: Princeton University Press

ISBN: 9780691125510

Category: Mathematics

Page: 373

View: 3148

Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.

Symmetric Bilinear Forms

Author: John Milnor,Dale Husemoller

Publisher: Springer Science & Business Media

ISBN: 3642883303

Category: Mathematics

Page: 150

View: 5153

Seminar on Atiyah-Singer Index Theorem. (AM-57)

Author: Richard S. Palais

Publisher: Princeton University Press

ISBN: 1400882044

Category: Mathematics

Page: 376

View: 9818

The description for this book, Seminar on Atiyah-Singer Index Theorem. (AM-57), Volume 57, will be forthcoming.

Lectures on the H-Cobordism Theorem

Author: John Milnor

Publisher: Princeton University Press

ISBN: 1400878055

Category: Mathematics

Page: 124

View: 8372

These lectures provide students and specialists with preliminary and valuable information from university courses and seminars in mathematics. This set gives new proof of the h-cobordism theorem that is different from the original proof presented by S. Smale. Originally published in 1965. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.