Calculus and Ordinary Differential Equations

Author: David Pearson

Publisher: Elsevier

ISBN: 008092865X

Category: Mathematics

Page: 240

View: 1075

Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

Calculus and ODEs

Author: David Pearson

Publisher: Butterworth-Heinemann

ISBN: 0340625309

Category: Mathematics

Page: 227

View: 4032

Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

Vector Calculus

Author: Bill Cox,W. Cox

Publisher: Butterworth-Heinemann

ISBN: 0340677414

Category: Computers

Page: 244

View: 2839

Building on previous texts in the Modular Mathematics series, in particular 'Vectors in Two or Three Dimensions' and 'Calculus and ODEs', this book introduces the student to the concept of vector calculus. It provides an overview of some of the key techniques as well as examining functions of more than one variable, including partial differentiation and multiple integration. Undergraduates who already have a basic understanding of calculus and vectors, will find this text provides tools with which to progress onto further studies; scientists who need an overview of higher order differential equations will find it a useful introduction and basic reference.

Ordinary Differential Equations

Author: W. Cox

Publisher: Butterworth-Heinemann

ISBN: 0340632038

Category: Computers

Page: 222

View: 7586

Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required. The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further study of partial differential equations.

Analysis

Author: Ekkehard Kopp

Publisher: Butterworth-Heinemann

ISBN: 0080928722

Category: Mathematics

Page: 200

View: 4402

Building on the basic concepts through a careful discussion of covalence, (while adhering resolutely to sequences where possible), the main part of the book concerns the central topics of continuity, differentiation and integration of real functions. Throughout, the historical context in which the subject was developed is highlighted and particular attention is paid to showing how precision allows us to refine our geometric intuition. The intention is to stimulate the reader to reflect on the underlying concepts and ideas.

Mathematical Analysis II

Author: Claudio Canuto,Anita Tabacco

Publisher: Springer

ISBN: 3319127578

Category: Mathematics

Page: 559

View: 7524

The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, familiarise with the corresponding key techniques and find the proofs of the main results. The second level enables the strongly motivated reader to explore further into the subject, by studying also the material contained in the appendices. Definitions are enriched by many examples, which illustrate the properties discussed. A host of solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a second course of Mathematical Analysis.

Introduction to Nonlinear Differential and Integral Equations

Author: Harold Thayer Davis

Publisher: Courier Corporation

ISBN: 9780486609713

Category: Mathematics

Page: 566

View: 6840

Topics covered include differential equations of the 1st order, the Riccati equation and existence theorems, 2nd order equations, elliptic integrals and functions, nonlinear mechanics, nonlinear integral equations, more. Includes 137 problems.

Linear Partial Differential Equations and Fourier Theory

Author: Marcus Pivato

Publisher: Cambridge University Press

ISBN: 0521199700

Category: Mathematics

Page: 601

View: 7598

This highly visual introductory textbook provides a rigorous mathematical foundation for all solution methods and reinforces ties to physical motivation.

Books in Series

Author: N.A

Publisher: N.A

ISBN: 9780835221092

Category: Monographic series

Page: 1756

View: 909

Courses of Study

Author: Cornell University

Publisher: N.A

ISBN: N.A

Category: Education

Page: N.A

View: 7133

Essentials of Mathematical Methods in Science and Engineering

Author: S. Selçuk Bayin

Publisher: John Wiley & Sons

ISBN: 1118626168

Category: Mathematics

Page: 802

View: 4031

A complete introduction to the multidisciplinary applications ofmathematical methods In order to work with varying levels of engineering and physicsresearch, it is important to have a firm understanding of keymathematical concepts such as advanced calculus, differentialequations, complex analysis, and introductory mathematical physics.Essentials of Mathematical Methods in Science andEngineering provides a comprehensive introduction to thesemethods under one cover, outlining basic mathematical skills whilealso encouraging students and practitioners to develop new,interdisciplinary approaches to their research. The book begins with core topics from various branches ofmathematics such as limits, integrals, and inverse functions.Subsequent chapters delve into the analytical tools that arecommonly used in scientific and engineering studies, includingvector analysis, generalized coordinates, determinants andmatrices, linear algebra, complex numbers, complex analysis, andFourier series. The author provides an extensive chapter onprobability theory with applications to statistical mechanics andthermodynamics that complements the following chapter oninformation theory, which contains coverage of Shannon's theory,decision theory, game theory, and quantum information theory. Acomprehensive list of references facilitates further exploration ofthese topics. Throughout the book, numerous examples and exercises reinforcethe presented concepts and techniques. In addition, the book is ina modular format, so each chapter covers its subject thoroughly andcan be read independently. This structure affords flexibility forindividualizing courses and teaching. Providing a solid foundation and overview of the variousmathematical methods and applications in multidisciplinaryresearch, Essentials of Mathematical Methods in Science andEngineering is an excellent text for courses in physics,science, mathematics, and engineering at the upper-undergraduateand graduate levels. It also serves as a useful reference forscientists and engineers who would like a practical review ofmathematical methods.

An Introduction to Mathematical Modeling

Author: Edward A. Bender

Publisher: Courier Corporation

ISBN: 9780486411804

Category: Mathematics

Page: 256

View: 1258

Accessible text features over 100 reality-based examples pulled from the science, engineering and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

Introductory Mathematics: Applications and Methods

Author: Gordon S. Marshall

Publisher: Springer Science & Business Media

ISBN: 1447134125

Category: Mathematics

Page: 226

View: 5833

This book is aimed at undergraduate students embarking on the first year of a modular mathematics degree course. It is a self-contained textbook making it ideally suited to distance learning and a useful reference source for courses with the traditional lecture/tutorial structure. The theoretical content is firmly based but the principal focus is on techniques and applications. The important aims and objectives are presented clearly and then reinforced using complete worked solutions within the text. There is a natural increase in difficulty and understanding as each chapter progresses, always building upon the basic elements. It is assumed that the reader has studied elementary calculus at Advanced level and is at least familiar with the concept of function and has been exposed to basic differentiation and integration techniques. Although these are covered in the book they are presented as a refresher course to jog the student's memory rather than to introduce the topic for the first time. The early chapters cover the topics of matrix algebra, vector algebra and com plex numbers in sufficient depth for the student to feel comfortable -when they reappear later in the book. Subsequent chapters then build upon the student's 'A' level knowledge in the area of real variable calculus, including partial differentiation and mUltiple inte grals. The concluding chapter on differential equations motivates the student's learning by consideration of applications taken from both physical and eco nomic contexts.