**Author**: N. Gupta; R.S. Dahiya

**Publisher:** Firewall Media

**ISBN:** 9788170088677

**Category:**

**Page:** 680

**View:** 5360

Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

This problem book contains exercises for courses in differential equations and calculus of variations at universities and technical institutes. It is designed for non-mathematics students and also for scientists and practicing engineers who feel a need to refresh their knowledge. The book contains more than 260 examples and about 1400 problems to be solved by the students — much of which have been composed by the authors themselves. Numerous references are given at the end of the book to furnish sources for detailed theoretical approaches, and expanded treatment of applications. Contents:First Order Differential EquationsN-th Order Differential EquationsLinear Second Order EquationsSystems of Differential EquationsPartial Equations of the First OrderNonlinear Equations and StabilityCalculus of VariationsAnswers to Problems Readership: Mathematicians and engineers. keywords:Examples;Differential Equations;Calculus of Variations “… the book can be successfully used both by students and practising engineers.” Mathematics Abstracts

This book presents a modern treatment of material traditionally covered in the sophomore-level course in ordinary differential equations. While this course is usually required for engineering students the material is attractive to students in any field of applied science, including those in the biological sciences. The standard analytic methods for solving first and second-order differential equations are covered in the first three chapters. Numerical and graphical methods are considered, side-by-side with the analytic methods, and are then used throughout the text. An early emphasis on the graphical treatment of autonomous first-order equations leads easily into a discussion of bifurcation of solutions with respect to parameters. The fourth chapter begins the study of linear systems of first-order equations and includes a section containing all of the material on matrix algebra needed in the remainder of the text. Building on the linear analysis, the fifth chapter brings the student to a level where two-dimensional nonlinear systems can be analyzed graphically via the phase plane. The study of bifurcations is extended to systems of equations, using several compelling examples, many of which are drawn from population biology. In this chapter the student is gently introduced to some of the more important results in the theory of dynamical systems. A student project, involving a problem recently appearing in the mathematical literature on dynamical systems, is included at the end of Chapter 5. A full treatment of the Laplace transform is given in Chapter 6, with several of the examples taken from the biological sciences. An appendix contains completely worked-out solutions to all of the odd-numbered exercises. The book is aimed at students with a good calculus background that want to learn more about how calculus is used to solve real problems in today's world. It can be used as a text for the introductory differential equations course, and is readable enough to be used even if the class is being "flipped." The book is also accessible as a self-study text for anyone who has completed two terms of calculus, including highly motivated high school students. Graduate students preparing to take courses in dynamical systems theory will also find this text useful.

This introductory course in ordinary differential equations, intended for junior undergraduate students in applied mathematics, science and engineering, focuses on methods of solution and applications rather than theoretical analyses. Applications drawn mainly from dynamics, population biology and electric circuit theory are used to show how ordinary differential equations appear in the formulation of problems in science and engineering. The calculus required to comprehend this course is rather elementary, involving differentiation, integration and power series representation of only real functions of one variable. A basic knowledge of complex numbers and their arithmetic is also assumed, so that elementary complex functions which can be used for working out easily the general solutions of certain ordinary differential equations can be introduced. The pre-requisites just mentioned aside, the course is mainly self-contained. To promote the use of this course for self-study, suggested solutions are not only given to all set exercises, but they are also by and large complete with details.

This monograph explores various aspects of the inverse problem of the calculus of variations for systems of ordinary differential equations. The main problem centers on determining the existence and degree of generality of Lagrangians whose system of Euler-Lagrange equations coincides with a given system of ordinary differential equations. The authors rederive the basic necessary and sufficient conditions of Douglas for second order equations and extend them to equations of higher order using methods of the variational bicomplex of Tulcyjew, Vinogradov, and Tsujishita. What emerges is a fundamental dichotomy between second and higher order systems: the most general Lagrangian for any higher order system can depend only upon finitely many constants. The authors present an algorithm, based upon exterior differential systems techniques, for solving the inverse problem for second order equations. A number of new examples illustrate the effectiveness of this approach. The monograph also contains a study of the inverse problem for a pair of geodesic equations arising from a two dimensional symmetric affine connection. The various possible solutions to the inverse problem for these equations are distinguished by geometric properties of the Ricci tensor.

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Als die Gute Fee H?nschen fragte: "was w?nschst Du dir?", antwortete er: "Keine Differentialgleichungen mehr in der Schule": Hans im Gl?ck! Jetzt k?nnen Sie auch auf eine Gute Fee warten, oder sich dieses Buch kaufen. Sie finden hier Hilfe sollten Sie mit linearen und nichtlinearen gew?hnlichen Differentialgleichungen ihre liebe M?he haben, seien sie nun erster, zweiter oder h?herer Ordnung. Sie lernen auch, was Sie zu Laplace Transformation, Potenzreihen und vielen anderen vertrackten Problemen wissen sollten. Sehen Sie der Realit?t ins Auge, mit diesem Buch.

Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure and applied mathematics, as well as physics and engineering should find this textbook useful. Only basic results of one-variable calculus and linear algebra are used, and simple yet pertinent examples and exercises illustrate the usefulness of most theorems. Many of these examples are new or difficult to locate in the literature, and so the original sources of most notions and results are given to help readers understand the development of the field.

Introduction to the Operational Calculus is a translation of "Einfuhrung in die Operatorenrechnung, Second Edition." This book deals with Heaviside's interpretation, on the Laplace integral, and on Jan Mikusinki's fundamental work "Operational Calculus." Throughout the book, basic algebraic concepts appear as aids to understanding some relevant points of the subject. An important field for research in analysis is asymptotic properties. This text also discusses examples to show the potentialities in applying operational calculus that run beyond ordinary differential equations with constant coefficients. In using operational calculus to solve more complicated problems than those of ordinary differential equations with constant coefficients, the concept of convergence assumes a significant role in the field of operators. This book also extends the Laplace transformation and applies it to non-transformable functions. This text also present three methods in which operational calculus can be modified and become useful in solving specific ranges of problems. These methods pertain to the finite Laplace transformation, to partial differential equations, and to the Volterra integral equations and ordinary differential equations with variable coefficients. This book can prove valuable for mathematicians, students, and professor of calculus and advanced mathematics.

In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equa tions with constant coefficients.

Nach der Analysis ist vor der Analysis. Dies ist das richtige Buch für Sie, wenn es in der Analysis ein wenig mehr sein soll oder auch muss. Mark Zegarelli erklärt Ihnen, was Sie zur infiniten Integration und zu differential- und multivariablen Gleichungen wissen müssen. Er fährt mit Taylorreihe und Substitutionen fort und führt Sie auch in die Dritte Dimension der Analysis; und das ist lange noch nicht alles! Im Ton verbindlich, in der Sache kompetent führt er Ihre Analysiskenntnisse auf eine neue Stufe.

Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required. The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further study of partial differential equations.

Each Chapter Of The Book Deals With Mathematical Modelling Through One Or More Specified Techniques. Thus There Are Chapters On Mathematical Modelling Through Algebra, Geometry, Trigonometry And Calculus, Through Ordinary Differential Equations Of First And Second Order, Through Systems Of Differential Equations, Through Difference Equations, Through Partial Differential Equations, Through Functional Equations And Integral Equations, Through Delay-Differential, Differential-Difference And Integro-Differential Equations, Through Calculus Of Variations And Dynamic Programming, Through Graphs, Through Mathematical Programming, Maximum Principle And Maximum Entropy Principle.Each Chapter Contains Mathematical Models From Physical, Biological, Social, Management Sciences And Engineering And Technology And Illustrates Unity In Diversity Of Mathematical Sciences.The Book Contains Plenty Of Exercises In Mathematical Modelling And Is Aimed To Give A Panoramic View Of Applications Of Modelling In All Fields Of Knowledge. It Contains Both Probabilistic And Deterministic Models.The Book Presumes Only The Knowledge Of Undergraduate Mathematics And Can Be Used As A Textbook At Senior Undergraduate Or Post-Graduate Level For A One Or Two- Semester Course For Students Of Mathematics, Statistics, Physical, Social And Biological Sciences And Engineering. It Can Also Be Useful For All Users Of Mathematics And For All Mathematical Modellers.

The text has been divided in two volumes: Volume I (Ch. 1-13) & Volume II (Ch. 14-22). In addition to the review material and some basic topics as discussed in the opening chapter, the main text in Volume I covers topics on infinite series, differential and integral calculus, matrices, vector calculus, ordinary differential equations, special functions and Laplace transforms. Volume II covers topics on complex analysis, Fourier analysis, partial differential equations and statistics. The present book has numerous distinguishing features over the already existing books on the same topic. The chapters have been planned to create interest among the readers to study and apply the mathematical tools. The subject has been presented in a very lucid and precise manner with a wide variety of examples and exercises, which would eventually help the reader for hassle free study.

Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.