Calculus and ODEs

Author: D. B. Pearson

Publisher: Butterworth-Heinemann

ISBN: 0340625309

Category: Mathematics

Page: 227

View: 6535

Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

Comprehensive Mathematics for Computer Scientists 2

Calculus and ODEs, Splines, Probability, Fourier and Wavelet Theory, Fractals and Neural Networks, Categories and Lambda Calculus

Author: Guerino Mazzola,Gérard Milmeister,Jody Weissmann

Publisher: Springer Science & Business Media

ISBN: 3540269371

Category: Computers

Page: 355

View: 6761

This second volume of a comprehensive tour through mathematical core subjects for computer scientists completes the ?rst volume in two - gards: Part III ?rst adds topology, di?erential, and integral calculus to the t- ics of sets, graphs, algebra, formal logic, machines, and linear geometry, of volume 1. With this spectrum of fundamentals in mathematical e- cation, young professionals should be able to successfully attack more involved subjects, which may be relevant to the computational sciences. In a second regard, the end of part III and part IV add a selection of more advanced topics. In view of the overwhelming variety of mathematical approaches in the computational sciences, any selection, even the most empirical, requires a methodological justi?cation. Our primary criterion has been the search for harmonization and optimization of thematic - versity and logical coherence. This is why we have, for instance, bundled such seemingly distant subjects as recursive constructions, ordinary d- ferential equations, and fractals under the unifying perspective of c- traction theory.

Calculus and Ordinary Differential Equations

Author: David Pearson

Publisher: Elsevier

ISBN: 008092865X

Category: Mathematics

Page: 240

View: 4129

Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

Calculus and Ordinary Differential Equations

Author: David Pearson

Publisher: Elsevier

ISBN: 008092865X

Category: Mathematics

Page: 240

View: 8517

Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

Comprehensive Mathematics for Computer Scientists 1

Sets and Numbers, Graphs and Algebra, Logic and Machines, Linear Geometry

Author: Guerino Mazzola,Gérard Milmeister,Jody Weissmann

Publisher: Springer Science & Business Media

ISBN: 3540368744

Category: Computers

Page: 388

View: 3126

Contains all the mathematics that computer scientists need to know in one place.

Ordinary Differential Equations

An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences

Author: Morris Tenenbaum,Harry Pollard

Publisher: Courier Corporation

ISBN: 0486649407

Category: Mathematics

Page: 808

View: 5028

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

Vector Calculus

Author: William Cox

Publisher: Butterworth-Heinemann

ISBN: 0080572952

Category: Mathematics

Page: 256

View: 7317

Building on previous texts in the Modular Mathematics series, in particular 'Vectors in Two or Three Dimensions' and 'Calculus and ODEs', this book introduces the student to the concept of vector calculus. It provides an overview of some of the key techniques as well as examining functions of more than one variable, including partial differentiation and multiple integration. Undergraduates who already have a basic understanding of calculus and vectors, will find this text provides tools with which to progress onto further studies; scientists who need an overview of higher order differential equations will find it a useful introduction and basic reference.

Ordinary Differential Equations

From Calculus to Dynamical Systems

Author: Virginia W. Noonburg

Publisher: The Mathematical Association of America

ISBN: 1939512042

Category: Mathematics

Page: 315

View: 5241

This book presents a modern treatment of material traditionally covered in the sophomore-level course in ordinary differential equations. While this course is usually required for engineering students the material is attractive to students in any field of applied science, including those in the biological sciences. The standard analytic methods for solving first and second-order differential equations are covered in the first three chapters. Numerical and graphical methods are considered, side-by-side with the analytic methods, and are then used throughout the text. An early emphasis on the graphical treatment of autonomous first-order equations leads easily into a discussion of bifurcation of solutions with respect to parameters. The fourth chapter begins the study of linear systems of first-order equations and includes a section containing all of the material on matrix algebra needed in the remainder of the text. Building on the linear analysis, the fifth chapter brings the student to a level where two-dimensional nonlinear systems can be analyzed graphically via the phase plane. The study of bifurcations is extended to systems of equations, using several compelling examples, many of which are drawn from population biology. In this chapter the student is gently introduced to some of the more important results in the theory of dynamical systems. A student project, involving a problem recently appearing in the mathematical literature on dynamical systems, is included at the end of Chapter 5. A full treatment of the Laplace transform is given in Chapter 6, with several of the examples taken from the biological sciences. An appendix contains completely worked-out solutions to all of the odd-numbered exercises. The book is aimed at students with a good calculus background that want to learn more about how calculus is used to solve real problems in today's world. It can be used as a text for the introductory differential equations course, and is readable enough to be used even if the class is being "flipped." The book is also accessible as a self-study text for anyone who has completed two terms of calculus, including highly motivated high school students. Graduate students preparing to take courses in dynamical systems theory will also find this text useful.

Essential PTC® Mathcad Prime® 3.0

A Guide for New and Current Users

Author: Brent Maxfield

Publisher: Academic Press

ISBN: 0124104584

Category: Computers

Page: 584

View: 2017

Learn how to use PTC® Mathcad Prime® 3.0, one of the world’s leading tools for technical computing, in the context of engineering, science, and math applications. Quickly harness the power of PTC Mathcad Prime 3.0 to solve both simple and complex problems. Essential PTC® Mathcad Prime® 3.0 is perfect for college students, first-time users, and experienced Mathcad 15 users who are moving to PTC Mathcad Prime 3.0. Updated from Maxfield’s popular Essential Mathcad, this book introduces the most powerful functions and features of the new PTC Mathcad Prime 3.0 software and teaches how to apply them to create comprehensive calculations for any quantitative subject. Examples from several fields demonstrate the power and utility of PTC Mathcad’s tools while also demonstrating how users can eff ectively incorporate Microsoft® Excel spreadsheets into the software. Learn the basics faster: Chapter 1 introduces many fundamentals of Mathcad, allowing the reader to begin using the program in less time. Learn PTC Mathcad tools in context: Incorporates many applied examples and problems from a wide variety of disciplines. Thorough discussion of many PTC Mathcad tools: Units, arrays, plotting, solving, symbolic calculations, programming, algebra, calculus, differential equations, reading from files, writing to files, and incorporating MS Excel spreadsheets. Includes a link to PTC with instructions on how to purchase the PTC® Mathcad Prime® 3.0 Student Edition (The Student Edition software is intended for educational purposes only.)

Introduction to Nonlinear Differential and Integral Equations

Author: Harold Thayer Davis

Publisher: Courier Corporation

ISBN: 9780486609713

Category: Mathematics

Page: 566

View: 3914

Topics covered include differential equations of the 1st order, the Riccati equation and existence theorems, 2nd order equations, elliptic integrals and functions, nonlinear mechanics, nonlinear integral equations, more. Includes 137 problems.

Ordinary Differential Equations and Dynamical Systems

Author: Gerald Teschl

Publisher: American Mathematical Soc.

ISBN: 0821883283

Category: Mathematics

Page: 356

View: 8787

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Ordinary Differential Equations and Linear Algebra: A Systems Approach

Author: Todd Kapitula

Publisher: SIAM

ISBN: 1611974097

Category: Mathematics

Page: 300

View: 7233

Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system.÷Ordinary Differential Equations and Linear Algebra: A Systems Approach÷systematically develops the linear algebra needed to solve systems of ODEs and includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). It emphasizes mathematical modeling and contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.÷

Variational Calculus, Optimal Control, and Applications

International Conference in Honour of L. Bittner and R. Klèotzler, Trassenheide, Germany, September 23-27, 1996

Author: Leonhard Bittner,Rolf Klötzler,Werner H. Schmidt

Publisher: Springer Science & Business Media

ISBN: 9783764359065

Category: Mathematics

Page: 340

View: 2432

The 12th conference on "Variational Calculus, Optimal Control and Applications" took place September 23-27, 1996, in Trassenheide on the Baltic Sea island of Use­ dom. Seventy mathematicians from ten countries participated. The preceding eleven conferences, too, were held in places of natural beauty throughout West Pomerania; the first time, in 1972, in Zinnowitz, which is in the immediate area of Trassenheide. The conferences were founded, and led ten times, by Professor Bittner (Greifswald) and Professor KlCitzler (Leipzig), who both celebrated their 65th birthdays in 1996. The 12th conference in Trassenheide, was, therefore, also dedicated to L. Bittner and R. Klotzler. Both scientists made a lasting impression on control theory in the former GDR. Originally, the conferences served to promote the exchange of research results. In the first years, most of the lectures were theoretical, but in the last few conferences practical applications have been given more attention. Besides their pioneering theoretical works, both honorees have also always dealt with applications problems. L. Bittner has, for example, examined optimal control of nuclear reactors and associated safety aspects. Since 1992 he has been working on applications in optimal control in flight dynamics. R. Klotzler recently applied his results on optimal autobahn planning to the south tangent in Leipzig. The contributions published in these proceedings reflect the trend to practical problems; starting points are often questions from flight dynamics.

The Qualitative Theory of Ordinary Differential Equations

An Introduction

Author: Fred Brauer,John A. Nohel

Publisher: Courier Corporation

ISBN: 9780486658469

Category: Mathematics

Page: 314

View: 5395

"This is a very good book ... with many well-chosen examples and illustrations." — American Mathematical Monthly This highly regarded text presents a self-contained introduction to some important aspects of modern qualitative theory for ordinary differential equations. It is accessible to any student of physical sciences, mathematics or engineering who has a good knowledge of calculus and of the elements of linear algebra. In addition, algebraic results are stated as needed; the less familiar ones are proved either in the text or in appendixes. The topics covered in the first three chapters are the standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. The next three chapters, the heart of the book, deal with stability theory and some applications, such as oscillation phenomena, self-excited oscillations and the regulator problem of Lurie. One of the special features of this work is its abundance of exercises-routine computations, completions of mathematical arguments, extensions of theorems and applications to physical problems. Moreover, they are found in the body of the text where they naturally occur, offering students substantial aid in understanding the ideas and concepts discussed. The level is intended for students ranging from juniors to first-year graduate students in mathematics, physics or engineering; however, the book is also ideal for a one-semester undergraduate course in ordinary differential equations, or for engineers in need of a course in state space methods.

Introduction to Partial Differential Equations with Applications

Author: E. C. Zachmanoglou,Dale W. Thoe

Publisher: Courier Corporation

ISBN: 048613217X

Category: Mathematics

Page: 432

View: 6783

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Ordinary Differential Equations

Methods and Applications

Author: W. T. Ang,Y. S. Park

Publisher: Universal-Publishers

ISBN: 1599429756

Category: Mathematics

Page: 204

View: 7804

This introductory course in ordinary differential equations, intended for junior undergraduate students in applied mathematics, science and engineering, focuses on methods of solution and applications rather than theoretical analyses. Applications drawn mainly from dynamics, population biology and electric circuit theory are used to show how ordinary differential equations appear in the formulation of problems in science and engineering. The calculus required to comprehend this course is rather elementary, involving differentiation, integration and power series representation of only real functions of one variable. A basic knowledge of complex numbers and their arithmetic is also assumed, so that elementary complex functions which can be used for working out easily the general solutions of certain ordinary differential equations can be introduced. The pre-requisites just mentioned aside, the course is mainly self-contained. To promote the use of this course for self-study, suggested solutions are not only given to all set exercises, but they are also by and large complete with details.

Numerical Methods for Ordinary Differential Equations

Author: J. C. Butcher

Publisher: John Wiley & Sons

ISBN: 1119121523

Category: Mathematics

Page: 544

View: 7473

A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.

Differential Equations and Dynamical Systems

Author: Lawrence Perko

Publisher: Springer Science & Business Media

ISBN: 1461300037

Category: Mathematics

Page: 557

View: 4266

This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.