Building the Data Warehouse

Author: W. H. Inmon

Publisher: John Wiley & Sons

ISBN:

Category: Computers

Page: 432

View: 232

The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing "bible" provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.

Building the Data Warehouse

Author: William H. Inmon

Publisher: QED Information Sciences

ISBN:

Category: Computers

Page: 272

View: 867

"Data warehouses provide a much-needed strategy for organizations to collect, store, and analyze vast amounts of business data. As businesses expand both brick-and-mortar and online activities, the field of data warehousing has become increasingly important. Since it was first published in 1990, W. H. Inmon's Building the Data Warehouse has been the bible of data warehousing - it is the book that launched the data warehousing industry and it remains the preeminent introduction to the subject. This new edition covers the latest developments with this technology, many of which have been pioneered by Inmon himself."--BOOK JACKET.

BUILDING THE DATA WAREHOUSE (4th Ed.)

Author: William H. Inmon

Publisher: John Wiley & Sons

ISBN:

Category:

Page: 544

View: 864

Market_Desc: · IT, Database, and Data Warehouse Managers and Developers Special Features: · Building the Data Warehouse has sold nearly 40,000 copies in its first 3 editions· Inmon is widely recognized as the Father of the Data Warehouse and remains one of the two leading authorities in the industry he helped to invent· The new edition covers new approaches and technologies, many of which have been pioneered by Inmon himself· Price of this new edition will be reduced from $65 to $55, and 100 new pages added About The Book: This book provides a high-level, conceptual overview of the major components of data warehouse systems, as well as the core approaches used to design and build data warehouses. Topics covered in this book are methods for handling unstructured data in a data warehouse, storing data across multiple storage media, the pros and cons of relational vs. multidimensional design, data monitoring and testing.

Building the Unstructured Data Warehouse

Architecture, Analysis, and Design

Author: Bill Inmon

Publisher: Technics Publications

ISBN:

Category: Computers

Page: 216

View: 155

Learn essential techniques from data warehouse legend Bill Inmon on how to build the reporting environment your business needs now! Answers for many valuable business questions hide in text. How well can your existing reporting environment extract the necessary text from email, spreadsheets, and documents, and put it in a useful format for analytics and reporting? Transforming the traditional data warehouse into an efficient unstructured data warehouse requires additional skills from the analyst, architect, designer, and developer. This book will prepare you to successfully implement an unstructured data warehouse and, through clear explanations, examples, and case studies, you will learn new techniques and tips to successfully obtain and analyze text. Master these ten objectives: • Build an unstructured data warehouse using the 11-step approach • Integrate text and describe it in terms of homogeneity, relevance, medium, volume, and structure • Overcome challenges including blather, the Tower of Babel, and lack of natural relationships • Avoid the Data Junkyard and combat the “Spider’s Web” • Reuse techniques perfected in the traditional data warehouse and Data Warehouse 2.0,including iterative development • Apply essential techniques for textual Extract, Transform, and Load (ETL) such as phrase recognition, stop word filtering, and synonym replacement • Design the Document Inventory system and link unstructured text to structured data • Leverage indexes for efficient text analysis and taxonomies for useful external categorization • Manage large volumes of data using advanced techniques such as backward pointers • Evaluate technology choices suitable for unstructured data processing, such as data warehouse appliances The following outline briefly describes each chapter’s content: • Chapter 1 defines unstructured data and explains why text is the main focus of this book. The sources for text, including documents, email, and spreadsheets, are described in terms of factors such as homogeneity, relevance, and structure. • Chapter 2 addresses the challenges one faces when managing unstructured data. These challenges include volume, blather, the Tower of Babel, spelling, and lack of natural relationships. Learn how to avoid a data junkyard, which occurs when unstructured data is not properly integrated into the data warehouse. This chapter emphasizes the importance of storing integrated unstructured data in a relational structure. We are cautioned on both the commonality and dangers associated with text based on paper. • Chapter 3 begins with a timeline of applications, highlighting their evolution over the decades. Eventually, powerful yet siloed applications created a “spider’s web” environment. This chapter describes how data warehouses solved many problems, including the creation of corporate data, the ability to get out of the maintenance backlog conundrum, and greater data integrity and data accessibility. There were problems, however, with the data warehouse that were addressed in Data Warehouse 2.0 (DW 2.0), such as the inevitable data lifecycle. This chapter discusses the DW 2.0 architecture, which leads into the role of the unstructured data warehouse. The unstructured data warehouse is defined and benefits are given. There are several features of the conventional data warehouse that can be leveraged for the unstructured data warehouse, including ETL processing, textual integration, and iterative development. • Chapter 4 focuses on the heart of the unstructured data warehouse: Textual Extract, Transform, and Load (ETL). This chapter has separate sections on extracting text, transforming text, and loading text. The chapter emphasizes the issues around source data. There are a wide variety of sources, and each of the sources has its own set of considerations. Extracting pointers are provided, such as reading documents only once and recognizing common and different file types. Transforming text requires addressing many considerations discussed in this chapter, including phrase recognition, stop word filtering, and synonym replacement. Loading text is the final step. There are important points to understand here, too, that are explained in this chapter, such as the importance of the thematic approach and knowing how to handle large volumes of data. Two ETL examples are provided, one on email and one on spreadsheets. • Chapter 5 describes the 11 steps required to develop the unstructured data warehouse. The methodology explained in this chapter is a combination of both traditional system development lifecycle and spiral approaches. • Chapter 6 describes how to inventory documents for maximum analysis value, as well as link the unstructured text to structured data for even greater value. The Document Inventory is discussed, which is similar to a library card catalog used for organizing corporate documents. This chapter explores ways of linking unstructured text to structured data. The emphasis is on taking unstructured data and reducing it into a form of data that is structured. Related concepts to linking, such as probabilistic linkages and dynamic linkages, are discussed. • Chapter 7 goes through each of the different types of indexes necessary to make text analysis efficient. Indexes range from simple indexes, which are fast to create and are good if the analyst really knows what needs to be analyzed before the indexing process begins, to complex combined indexes, which can be made up of any and all of the other kinds of indexes. • Chapter 8 explains taxonomies and how they can be used within the unstructured data warehouse. Both simple and complicated taxonomies are discussed. Techniques to help the reader leverage taxonomies, including using preferred taxonomies, external categorization, and cluster analysis are described. Real world problems are raised, including the possibilities of encountering hierarchies, multiple types, and recursion. The chapter ends with a discussion comparing a taxonomy with a data model. • Chapter 9 explains ways of coping with large amounts of unstructured data. Techniques such as keeping the unstructured data at its source and using backward pointers are discussed. The chapter explains why iterative development is so important. Ways of reducing the amount of data are presented, including screening and removing extraneous data, as well as parallelizing the workload. • Chapter 10 focuses on challenges and some technology choices that are suitable for unstructured data processing. The traditional data warehouse processing technology is reviewed. In addition, the data warehouse appliance is discussed. • Chapters 11, 12, and 13 put all of the previously discussed techniques and approaches in context through three case studies: the Ablatz Medical Group, the Eastern Hills Oil Company, and the Amber Oil Company.

Building a Data Warehouse

With Examples in SQL Server

Author: Vincent Rainardi

Publisher: Apress

ISBN:

Category: Computers

Page: 523

View: 412

Building a Data Warehouse: With Examples in SQL Server describes how to build a data warehouse completely from scratch and shows practical examples on how to do it. Author Vincent Rainardi also describes some practical issues he has experienced that developers are likely to encounter in their first data warehousing project, along with solutions and advice. The relational database management system (RDBMS) used in the examples is SQL Server; the version will not be an issue as long as the user has SQL Server 2005 or later. The book is organized as follows. In the beginning of this book (chapters 1 through 6), you learn how to build a data warehouse, for example, defining the architecture, understanding the methodology, gathering the requirements, designing the data models, and creating the databases. Then in chapters 7 through 10, you learn how to populate the data warehouse, for example, extracting from source systems, loading the data stores, maintaining data quality, and utilizing the metadata. After you populate the data warehouse, in chapters 11 through 15, you explore how to present data to users using reports and multidimensional databases and how to use the data in the data warehouse for business intelligence, customer relationship management, and other purposes. Chapters 16 and 17 wrap up the book: After you have built your data warehouse, before it can be released to production, you need to test it thoroughly. After your application is in production, you need to understand how to administer data warehouse operation. What you’ll learn A detailed understanding of what it takes to build a data warehouse The implementation code in SQL Server to build the data warehouse Dimensional modeling, data extraction methods, data warehouse loading, populating dimension and fact tables, data quality, data warehouse architecture, and database design Practical data warehousing applications such as business intelligence reports, analytics applications, and customer relationship management Who this book is for There are three audiences for the book. The first are the people who implement the data warehouse. This could be considered a field guide for them. The second is database users/admins who want to get a good understanding of what it would take to build a data warehouse. Finally, the third audience is managers who must make decisions about aspects of the data warehousing task before them and use the book to learn about these issues.

Building the Operational Data Store

Author: W. H. Inmon

Publisher: Wiley

ISBN:

Category: Computers

Page: 336

View: 708

The most comprehensive guide to building, using, and managing the operational data store. Building the Operational Data Store, Second Edition. In the five years since the publication of the first edition of this book, the operational data store has grown from an intriguing concept to an exciting reality at enterprise organizations, worldwide. Still the only guide on the subject, this revised and expanded edition of Bill Inmon's classic goes beyond the theory of the first edition to provide detailed, practical guidance on designing, building, managing, and getting the most of an ODS. With the help of fascinating and instructive case studies, Inmon shares what he knows about: * How the ODS fits with the corporate information factory. * Different types of ODS and how to choose the right one for your organization. * Designing and building an ODS from scratch. * Managing and fine-tuning an ODS for peak efficiency. * ODS support technology. * The pros and cons of competing off-the-shelf ODS products. * The advantages and disadvantages of various hardware and software platforms. * Integrating the ODS with data marts. * Distributed metadata using the ODS. * Data aggregation within the ODS. * Business process reengineering and the ODS. * The role of standards in the ODS. Visit our Web site at www.wiley.com/compbooks/

Building the Unstructured Data Warehouse

Architecture, Analysis, and Design

Author: W. H. Inmon

Publisher: Technics Publications

ISBN:

Category: Computers

Page: 216

View: 514

Learn essential techniques from data warehouse legend Bill Inmon on how to build the reporting environment your business needs now! Answers for many valuable business questions hide in text. How well can your existing reporting environment extract the necessary text from email, spreadsheets, and documents, and put it in a useful format for analytics and reporting? Transforming the traditional data warehouse into an efficient unstructured data warehouse requires additional skills from the analyst, architect, designer, and developer. This book will prepare you to successfully implement an unstructured data warehouse and, through clear explanations, examples, and case studies, you will learn new techniques and tips to successfully obtain and analyze text.Master these ten objectives: • Build an unstructured data warehouse using the 11-step approach • Integrate text and describe it in terms of homogeneity, relevance, medium, volume, and structure • Overcome challenges including blather, the Tower of Babel, and lack of natural relationships • Avoid the Data Junkyard and combat the “Spider's Web” • Reuse techniques perfected in the traditional data warehouse and Data Warehouse 2.0,including iterative development • Apply essential techniques for textual Extract, Transform, and Load (ETL) such as phrase recognition, stop word filtering, and synonym replacement • Design the Document Inventory system and link unstructured text to structured data • Leverage indexes for efficient text analysis and taxonomies for useful external categorization • Manage large volumes of data using advanced techniques such as backward pointers • Evaluate technology choices suitable for unstructured data processing, such as data warehouse appliances The following outline briefly describes each chapter's content: • Chapter 1 defines unstructured data and explains why text is the main focus of this book. The sources for text, including documents, email, and spreadsheets, are described in terms of factors such as homogeneity, relevance, and structure.• Chapter 2 addresses the challenges one faces when managing unstructured data. These challenges include volume, blather, the Tower of Babel, spelling, and lack of natural relationships. Learn how to avoid a data junkyard, which occurs when unstructured data is not properly integrated into the data warehouse. This chapter emphasizes the importance of storing integrated unstructured data in a relational structure. We are cautioned on both the commonality and dangers associated with text based on paper.• Chapter 3 begins with a timeline of applications, highlighting their evolution over the decades. Eventually, powerful yet siloed applications created a “spider's web” environment. This chapter describes how data warehouses solved many problems, including the creation of corporate data, the ability to get out of the maintenance backlog conundrum, and greater data integrity and data accessibility. There were problems, however, with the data warehouse that were addressed in Data Warehouse 2.0 (DW 2.0), such as the inevitable data lifecycle. This chapter discusses the DW 2.0 architecture, which leads into the role of the unstructured data warehouse. The unstructured data warehouse is defined and benefits are given. There are several features of the conventional data warehouse that can be leveraged for the unstructured data warehouse, including ETL processing, textual integration, and iterative development.• Chapter 4 focuses on the heart of the unstructured data warehouse: Textual Extract, Transform, and Load (ETL). This chapter has separate sections on extracting text, transforming text, and loading text. The chapter emphasizes the issues around source data. There are a wide variety of sources, and each of the sources has its own set of considerations. Extracting pointers are provided, such as reading documents only once and recognizing common and different file types. Transforming text requires addressing many considerations discussed in this chapter, including phrase recognition, stop word filtering, and synonym replacement. Loading text is the final step. There are important points to understand here, too, that are explained in this chapter, such as the importance of the thematic approach and knowing how to handle large volumes of data. Two ETL examples are provided, one on email and one on spreadsheets.• Chapter 5 describes the 11 steps required to develop the unstructured data warehouse. The methodology explained in this chapter is a combination of both traditional system development lifecycle and spiral approaches.• Chapter 6 describes how to inventory documents for maximum analysis value, as well as link the unstructured text to structured data for even greater value. The Document Inventory is discussed, which is similar to a library card catalog used for organizing corporate documents. This chapter explores ways of linking unstructured text to structured data. The emphasis is on taking unstructured data and reducing it into a form of data that is structured. Related concepts to linking, such as probabilistic linkages and dynamic linkages, are discussed.• Chapter 7 goes through each of the different types of indexes necessary to make text analysis efficient. Indexes range from simple indexes, which are fast to create and are good if the analyst really knows what needs to be analyzed before the indexing process begins, to complex combined indexes, which can be made up of any and all of the other kinds of indexes.• Chapter 8 explains taxonomies and how they can be used within the unstructured data warehouse. Both simple and complicated taxonomies are discussed. Techniques to help the reader leverage taxonomies, including using preferred taxonomies, external categorization, and cluster analysis are described. Real world problems are raised, including the possibilities of encountering hierarchies, multiple types, and recursion. The chapter ends with a discussion comparing a taxonomy with a data model.• Chapter 9 explains ways of coping with large amounts of unstructured data. Techniques such as keeping the unstructured data at its source and using backward pointers are discussed. The chapter explains why iterative development is so important. Ways of reducing the amount of data are presented, including screening and removing extraneous data, as well as parallelizing the workload.• Chapter 10 focuses on challenges and some technology choices that are suitable for unstructured data processing. The traditional data warehouse processing technology is reviewed. In addition, the data warehouse appliance is discussed.• Chapters 11, 12, and 13 put all of the previously discussed techniques and approaches in context through three case studies: the Ablatz Medical Group, the Eastern Hills Oil Company, and the Amber Oil Company.

Building A Data Warehouse: With Examples In Sql Server

Author: Vincent Rainardi

Publisher: John Wiley & Sons

ISBN:

Category:

Page: 540

View: 226

The book describes how to build a data warehouse completely from scratch and shows practical examples on how to do it. Author Vincent Rainardi also describes some practical issues he has experienced that developers are likely to encounter in their first data warehousing project, along with solutions and advice. The RDBMS used in the examples is SQL Server; the version will not be an issue as long as the user has SQL Server 2005 or later.· Introduction to Data Warehousing· Data Warehouse Architecture· Data Warehouse Development Methodology· Functional and Non-Functional Requirements· Data Modeling· Physical Database Design· Data Extraction· Populating the Data Warehouse· Assuring Data Quality· Metadata· Building Reports· Multidimensional Database· Using Data Warehouse for Business Intelligence· Using Data Warehouse for Customer Relationship Management· Other Datawarehouse Usage· Testing your DataWarehouse· Data Warehouse Administration

Building and Maintaining a Data Warehouse

Author: Fon Silvers

Publisher: CRC Press

ISBN:

Category: Computers

Page: 328

View: 349

As it is with building a house, most of the work necessary to build a data warehouse is neither visible nor obvious when looking at the completed product. While it may be easy to plan for a data warehouse that incorporates all the right concepts, taking the steps needed to create a warehouse that is as functional and user-friendly as it is theoretically sound, is not especially easy. That’s the challenge that Building and Maintaininga Data Warehouse answers. Based on a foundation of industry-accepted principles, this work provides an easy-to-follow approach that is cohesive and holistic. By offering the perspective of a successful data warehouse, as well as that of a failed one, this workdetails those factors that must be accomplished and those that are best avoided. Organized to logically progress from more general to specific information, this valuable guide: Presents areas of a data warehouse individually and in sequence, showing how each piece becomes a working part of the whole Examines the concepts and principles that are at the foundation of every successful data warehouse Explains how to recognize and attend to problematic gaps in an established data warehouse Provides the big picture perspective that planners and executives require Those considering the planning and creation of a data warehouse, as well as those who’ve already built one will profit greatly from the insights garnered by the author during his years of creating and gathering information on state-of-the-art data warehouses that are accessible, convenient, and reliable.

Building a Data Warehouse for Decision Support

Author: Vidette Poe

Publisher: Prentice Hall

ISBN:

Category: Computers

Page: 285

View: 608

Completely revised, expanded, and updated, this second edition gives extensive new coverage of data integration, management, indexing, cleansing, and transformation. The book covers powerful new multi-dimensional front-ends and conversion tools and gives detailed coverage of lifecycle issues.