Biomaterials

A Basic Introduction

Author: Qizhi Chen,George Thouas

Publisher: CRC Press

ISBN: 148222769X

Category: Medical

Page: 736

View: 9025

Explores Biomedical Science from a Unique Perspective Biomaterials: A Basic Introduction is a definitive resource for students entering biomedical or bioengineering disciplines. This text offers a detailed exploration of engineering and materials science, and examines the boundary and relationship between the two. Based on the author’s course lecture notes and many years of research, it presents students with the knowledge needed to select and design biomaterials used in medical devices. Placing special emphasis on metallic, ceramic, polymeric, and composite biomaterials, it explains the difference between materials science and materials engineering, introduces basic concepts and principles, and analyzes the critically important properties of biomaterials. Explains Complex Theories Using Aspects of Daily Life This text provides an appropriate balance between depth and broadness of coverage, and offers an understanding of the most important concepts and principles to students from a wide academic spectrum. It delivers the science of biomaterials in laymen terms, from a material standpoint, as well as a clinical applications point of view. It equips students majoring in materials science/engineering with knowledge on the fundamentals of how biomaterials behave at a biological level, and provides students majoring in medicine with information that is generally unavailable in traditional medical courses. The authors incorporate learning objectives at the beginning of each chapter, as well as chapter highlights, problems, and exercises at the end of each chapter. In addition, they present objectives, suggested activities, and reference material for further reading. Contains an overview of medical science vis-à-vis materials science, describes anatomy, histology, and cell biology Highlights health issues and diseases where biomaterials can easily find medical applications Presents knowledge of the relationship between the biomaterials and the living body Evaluates medical devices and looks into their respective regulations Biomaterials: A Basic Introduction contains an overview of basic biomaterials and concepts, and is written for upper-division students in the US/Canada, and second-level students in universities worldwide.

Introduction to Biomaterials

Basic Theory with Engineering Applications

Author: J. L. Ong,Mark R. Appleford,Gopinath Mani

Publisher: Cambridge University Press

ISBN: 0521116902

Category: Medical

Page: 419

View: 8316

A succinct introduction to the field of biomaterials engineering, packed with practical insights.

Biomaterials Science

An Introduction to Materials in Medicine

Author: Buddy D. Ratner,Allan S. Hoffman,Frederick J. Schoen,Jack E. Lemons

Publisher: Academic Press

ISBN: 008087780X

Category: Medical

Page: 1573

View: 2568

The revised edition of this renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science. It provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine. Over 29,000 copies sold, this is the most comprehensive coverage of principles and applications of all classes of biomaterials: "the only such text that currently covers this area comprehensively" - Materials Today Edited by four of the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials Fully revised and expanded, key new topics include of tissue engineering, drug delivery systems, and new clinical applications, with new teaching and learning material throughout, case studies and a downloadable image bank

Biomaterials

A Nano Approach

Author: Seeram Ramakrishna,Murugan Ramalingam,T .S. Sampath Kumar,Winston O. Soboyejo

Publisher: CRC Press

ISBN: 1420047825

Category: Technology & Engineering

Page: 372

View: 5231

There are several well-known books on the market that cover biomaterials in a general way, but none provide adequate focus on the future of and potential for actual uses of emerging nanontechnology in this burgeoning field. Biomaterials: A Nano Approach is written from a multi-disciplinary point of view that integrates aspects of materials science and engineering, nanotechnology, bioengineering, and biosciences. The book fills a glaring void in the literature by providing a comprehensive discussion of biomaterials and a scientifically plausible extrapolation of likely scenarios in which nanotechnology could play a significant role. The authors introduce and examine basic concepts, processing methodologies, and techniques involved in the preparation and characterization of nanobiomaterials that are specific to biomedical applications. A Self-Contained Book Illustrating Past, Present, and Future Trends in Biomaterials Spanning from the historical development of biomaterials to cutting-edge advances in the field, the text describes how basic concepts in nanotechnology are applied to the processing of novel nanobiomaterials, including nanostructured metals and alloys. With its illustrative examples and presentation of applications, this text offers a solid framework for understanding present and future trends of biomaterials in human healthcare systems. It is an ideal companion resource for students, researchers, and industrial scientists who specialize in biomaterials and nanobiomaterials.

An Introduction to Biomaterials, Second Edition

Author: Jeffrey O. Hollinger

Publisher: CRC Press

ISBN: 143981256X

Category: Medical

Page: 644

View: 3252

A practical road map to the key families of biomaterials and their potential applications in clinical therapeutics, Introduction to Biomaterials, Second Edition follows the entire path of development from theory to lab to practical application. It highlights new biocompatibility issues, metrics, and statistics as well as new legislation for intellectual property. Divided into four sections (Biology, Biomechanics, Biomaterials Interactions; Biomaterials Testing, Statistics, Regulatory Considerations, Intellectual Property; Biomaterials Compositions; and Biomaterials Applications), this dramatically revised edition includes both new and revised chapters on cells, tissues, and signaling molecules in wound healing cascades, as well as two revised chapters on standardized materials testing with in vitro and in vivo paradigms consistent with regulatory guidelines. Emphasizing biocompatibility at the biomaterial-host interface, it investigates cell-cell interactions, cell-signaling and the inflammatory and complement cascades, specific interactions of protein-adsorbed materials, and other inherent biological constraints including solid-liquid interfaces, diffusion, and protein types. Unique in its inclusion of the practicalities of biomaterials as an industry, the book also covers the basic principles of statistics, new U.S. FDA information on the biomaterials-biology issues relevant to patent applications, and considerations of intellectual property and patent disclosure. With nine completely new chapters and 24 chapters extensively updated and revised with new accomplishments and contemporary data, this comprehensive introduction discusses 13 important classes of biomaterials, their fundamental and applied research, practical applications, performance properties, synthesis and testing, potential future applications, and commonly matched clinical applications. The authors include extensive references, to create a comprehensive, yet manageable didactic work that is an invaluable desk references and instructional text for undergraduates and working professionals alike.

Characterization of Polymeric Biomaterials

Author: Maria Cristina Tanzi,Silvia Farè

Publisher: Woodhead Publishing

ISBN: 0081007434

Category: Technology & Engineering

Page: 500

View: 9027

Characterization of Polymeric Biomaterials presents a comprehensive introduction on the topic before discussing the morphology and surface characterization of biomedical polymers. The structural, mechanical, and biological characterization is described in detail, followed by invaluable case studies of polymer biomaterial implants. With comprehensive coverage of both theoretical and experimental information, this title will provide scientists with an essential guide on the topic of these materials which are regularly used for clinical applications, such as implants and drug delivery devices. However, a range of novel polymers and the development and modification of existing medical polymers means that there is an ongoing need to satisfy particular design requirements. This book explains the critical and fundamentals methods to characterize polymer materials for biomedical applications. Presents a self-contained reference on the characterization of polymeric biomaterials Provides comprehensive information on how to characterize biomedical polymers in order to improve design and synthesis Includes useful case studies that demonstrate the characterization of biomaterial implants

Engineering Materials for Biomedical Applications

Author: Teoh Swee Hin

Publisher: World Scientific

ISBN: 9814481645

Category: Medical

Page: 352

View: 1672

The success of any implant or medical device depends very much on the biomaterial used. Synthetic materials (such as metals, polymers and composites) have made significant contributions to many established medical devices. The aim of this book is to provide a basic understanding on the engineering and processing aspects of biomaterials used in medical applications. Of paramount importance is the tripartite relationship between material properties, processing methods and design. As the target audiences cover a wide interdisciplinary field, each chapter is written with a detailed background so that audience of another discipline will be able to understand. For the more knowledgeable reader, a detailed list of references is included. Contents:Introduction to Biomaterials Engineering and Processing — An Overview (S H Teoh)Durability of Metallic Implant Materials (M Sumita & S H Teoh)Corrosion of Metallic Implants (D J Blackwood et al.)Surface Modification of Metallic Biomaterials (T Hanawa)Biorestorative Materials in Dentistry (A U J Yap)Bioceramics: An Introduction (B Ben-Nissan & G Pezzotti)Polymeric Hydrogels (J Li)Bioactive Ceramic-Polymer Composites for Tissue Replacement (M Wang)Composites in Biomedical Applications (Z M Huang & S Ramakrishna)New Methods and Materials in Prosthetics for Rehabilitation of Lower Limb Amputees (P V S Lee)Chitin-Based Biomaterials (E Khor) Readership: Undergraduates and postgraduates (in bioengineering, materials science and engineering, mechanical engineering, dental and orthopaedic departments), engineers, researchers, academics/lecturers and industrialists. Keywords:Biomaterials Engineering and Processing;Durability of Metallic Implants;Surface Modification;Dental Materials;Bioceramics;Polymeric Hydrogels;Composites;Prosthetics;ChitinKey Features:Contains detailed information on the latest biomaterials (such as polymers, metals, ceramics and composites ) used in medical devicesProvides a good understanding into the durability issues such as an in-depth treatment of corrosion and fretting fatigue of metallic implantsIt leads the reader to have a greater appreciation on the need for surface modification so as to enable the medical device to have the appropriate tissue response

Characterization of Biomaterials

Chapter 1. Introduction to Biomaterials

Author: Susmita Bose,Amit Bandyopadhyay

Publisher: Elsevier Inc. Chapters

ISBN: 0128070951

Category: Science

Page: 450

View: 9965

This brief introductory chapter provides a broad overview of materials, biomaterials and the need to understand different techniques to characterize biomaterials. From this chapter, the reader can gain a perspective on how the rest of the topics in different chapters are divided to fully comprehend this inherently multidisciplinary field. Application of appropriate characterization tools can not only save time to fully evaluate different biomaterials, it can also make commercial biomedical devices safer. In the long run, safer biomedical devices can only reduce the pain and suffering of mankind, a dream that resonates with every biomedical researcher.

Biomaterials

An Introduction

Author: Joon Park,R. S. Lakes

Publisher: Springer Science & Business Media

ISBN: 0387378804

Category: Technology & Engineering

Page: 562

View: 404

With sixty years of combined experience, the authors of this extensively revised book have learned to emphasize the fundamental materials science, structure-property relationships, and biological responses as a foundation for a wide array of biomaterials applications. This edition includes a new chapter on tissue engineering and regenerative medicine, approximately 1900 references to additional reading, extensive tutorial materials on new developments in spinal implants and fixation techniques and theory. It also offers systematic coverage of orthopedic implants, and expanded treatment of ceramic materials and implants.

Electrofluidodynamic Technologies (EFDTs) for Biomaterials and Medical Devices

Principles and Advances

Author: Vincenzo Guarino,Luigi Ambrosio

Publisher: Woodhead Publishing

ISBN: 0081017464

Category: Technology & Engineering

Page: 426

View: 2926

Electrofluidodynamic Technologies (EFDTs) for Biomaterials and Medical Devices: Principles and Advances focuses on the fundamentals of EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms made of synthetic or natural polymers for use in tissue engineering, restoration and therapeutic treatments. The first part of this book deals with main technological aspects of EFDTs, such as basic technologies and the role of process parameters. The second part addresses applications of EFDTs in biomedical fields, with chapters on their application in tissue engineering, molecular delivery and implantable devices. This book is a valuable resource for materials scientists, biomedical engineers and clinicians alike. Presents a complete picture of Electrofluidodynamic technologies and their use in biomedicine Provides a comprehensive, professional reference on the subject, covering materials processing, fabrication and the use of novel devices for tissue engineering and therapeutics Focuses on technological advances, with an emphasis on studies and clinical trials

Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels

Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose

Author: RunCang Sun

Publisher: Elsevier

ISBN: 9780080932675

Category: Technology & Engineering

Page: 300

View: 4571

Materials from renewable resources are receiving increased attention, as leading industries and manufacturers attempt to replace declining petrochemical-based feedstocks with products derived from natural biomass, such as cereal straws. Cereal straws are expected to play an important role in the shift toward a sustainable economy, and a basic knowledge of the composition and structure of cereal straw is the key to using it wisely. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels: Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose provides an introduction to straw chemistry. Topics discussed include the structure, ultrastructure, and chemical composition of straw; the structure and isolation of extractives from the straw; the three main components of straw: cellulose, hemicelluloses, and lignins; and chemical modifications of straw for industrial applications. This book will be helpful to scientists interested in the areas of natural resource management, environmental chemistry, plant chemistry, material science, polysaccharide chemistry, and lignin chemistry. It will also be of interest to academic and industrial scientists/researchers interested in novel applications of agricultural residues for industrial and/or recycling technologies. Provides the basics of straw composition and the structure of its cell walls Details the procedures required to fractionate straw components to produce chemical derivatives from straw cellulose, hemicelluloses, and lignins Elucidates new techniques for the production of biodegradable materials for the energy sector, chemical industry, and pulp and paper business

Structural Biomaterials

Author: Julian F. V. Vincent

Publisher: Princeton University Press

ISBN: 9780691025131

Category: Science

Page: 244

View: 1014

"This book should go a long way towards filling the communication gap between biology and physics in [the area of biomaterials]. It begins with the basic theory of elasticity and viscoelasticity, describing concepts like stress, strain, compliance, and plasticity in simple mathematical terms. . . . For the non-biologist, these chapters provide a clear account of macromolecular structure and conformation. . . . [Vincent's work] is a delight to read, full of interesting anecdotes and examples from unexpected sources. . . . I can strongly recommend this book, as it shows how biologists could use mechanical properties as well as conventional methods to deduce molecular structure."--Anna Furth, The Times Higher Education Supplement In what is now recognized as a standard introduction to biomaterials, Julian Vincent presents a biologist's analysis of the structural materials of organisms, using molecular biology as a starting point. He explores the chemical structure of both proteins and polysaccharides, illustrating how their composition and bonding determine the mechanical properties of the materials in which they occurincluding pliant composites such as skin, artery, and plant tissue; stiff composites such as insect cuticle and wood; and biological ceramics such as teeth, bone, and eggshell. Here Vincent discusses the possibilities of taking ideas from nature with biomimicry and "intelligent" (or self-designing and sensitive) materials.

Handbook Of Biomaterials Evaluation

Scientific, Technical And Clinical Testing Of Implant Materials, Second Edition

Author: Andreas F von Recum

Publisher: CRC Press

ISBN: 9781560324799

Category: Medical

Page: 915

View: 6368

This handbook addresses the needs of those who are involved in inventing, developing, and testing implants and are concerned about the interactions between biomaterial and body tissue. The authors explore the physical, chemical, mechanical and regulatory considerations of synthetic materials used in surgical and implant procedures, and how these factors impact the latest developments and new approaches. This updated edition provides the biomaterials professional with necessary information on a range of issues, including bulk characterization, surface evaluations, toxicological evaluations, in vitro methods for safety evaluation, methods for evaluating materials in special applications, surgical considerations, systems implantology, soft and hard tissue history, regulatory aspects, and clinical trials.

Fundamental Biomaterials: Ceramics

Author: Sabu Thomas,Preetha Balakrishnan,M.S. Sreekala

Publisher: Woodhead Publishing

ISBN: 0081022042

Category: Technology & Engineering

Page: 498

View: 928

Fundamental Biomaterials: Ceramics provides current information on ceramics and their conversion from base materials to medical devices. Initial chapters review biomedical applications and types of ceramics, with subsequent sections focusing on the properties of ceramics, and on corrosion, degradation and wear of ceramic biomaterials. The book is ideal for researchers and professionals in the development stages of design, but is also helpful to medical researchers who need to understand and communicate the requirements of a biomaterial for a specific application. This title is the second in a three volume set, with each reviewing the most important and commonly used classes of biomaterials and providing comprehensive information on material properties, behavior, biocompatibility and applications. In addition, with the recent introduction of a number of interdisciplinary bio-related undergraduate and graduate programs, this book will be an appropriate reference volume for large number of students at undergraduate and post graduate levels Provides current information on findings and developments of ceramics and their conversion from base materials to medical devices Includes analyses of the types of ceramics and a discussion of a range of biomedical applications and essential properties, including information on corrosion, degradation and wear, and lifetime prediction of ceramic biomaterials Explores both theoretical and practical aspects of ceramics in biomaterials

Materials

Introduction and Applications

Author: Witold Brostow,Haley E. Hagg Lobland

Publisher: John Wiley & Sons

ISBN: 1119281024

Category: Technology & Engineering

Page: 480

View: 8696

Presents a fully interdisciplinary approach with a stronger emphasis on polymers and composites than traditional materials books Materials science and engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. Polymer materials are often mixed with inorganic materials to enhance their mechanical, electrical, thermal, and physical properties. Materials: Introduction and Applications addresses a gap in the existing textbooks on materials science. This book focuses on three Units. The first, Foundations, includes basic materials topics from Intermolecular Forces and Thermodynamics and Phase Diagrams to Crystalline and Non-Crystalline Structures. The second Units, Materials, goes into the details of many materials including Metals, Ceramics, Organic Raw Materials, Polymers, Composites, Biomaterials, and Liquid Crystals and Smart Materials. The third and final unit details Behavior and Properties including Rheological, Mechanical, Thermophysical, Color and Optical, Electrical and Dielectric, Magnetic, Surface Behavior and Tribology, Materials, Environment and Sustainability, and Testing of Materials. Materials: Introduction and Applications features: Basic and advanced Materials concepts Interdisciplinary information that is otherwise scattered consolidated into one work Links to everyday life application like electronics, airplanes, and dental materials Certain topics to be discussed in this textbook are more advanced. These will be presented in shaded gray boxes providing a two-level approach. Depending on whether you are a student of Mechanical Engineering, Electrical Engineering, Engineering Technology, MSE, Chemistry, Physics, etc., you can decide for yourself whether a topic presented on a more advanced level is not important for you—or else essential for you given your professional profile Witold Brostow is Regents Professor of Materials Science and Engineering at the University of North Texas. He is President of the International Council on Materials Education and President of the Scientific Committee of the POLYCHAR World Forum on Advanced Material (42 member countries). He has three honorary doctorates and is a Member of the European Academy of Sciences, Member of the National Academy of Sciences of Mexico, Foreign Member of the National Academy of Engineering of Georgia in Tbilisi and Fellow of the Royal Society of Chemistry in London. His publications have been cited more than 7200 times. Haley Hagg Lobland is the Associate Director of LAPOM at the University of North Texas. She is a Member of the POLYCHAR Scientific Committeee. She has received awards for her research presented at conferences in: Buzios, Rio de Janeiro, Brazil; NIST, Frederick, Maryland; Rouen, France; and Lviv, Ukraine. She has lectured in a number of countries including Poland and Spain. Her publications include joint ones with colleagues in Egypt, Georgia, Germany, India, Israel, Mexico, Poland, Turkey and United Kingdom.

Biological Materials Science

Biological Materials, Bioinspired Materials, and Biomaterials

Author: Marc André Meyers,Po-Yu Chen

Publisher: Cambridge University Press

ISBN: 1107010454

Category: Technology & Engineering

Page: 644

View: 3299

Takes a materials science approach, correlating structure-property relationships with function across a broad range of biological materials.

PEEK Biomaterials Handbook

Author: Steven M. Kurtz

Publisher: William Andrew

ISBN: 143774463X

Category: Technology & Engineering

Page: 298

View: 4591

PEEK biomaterials are currently used in thousands of spinal fusion patients around the world every year. Durability, biocompatibility and excellent resistance to aggressive sterilization procedures make PEEK a polymer of choice replacing metal in orthopedic implants, from spinal implants and hip replacements to finger joints and dental implants. This Handbook brings together experts in many different facets related to PEEK clinical performance as well as in the areas of materials science, tribology, and biology to provide a complete reference for specialists in the field of plastics, biomaterials, medical device design and surgical applications. Steven Kurtz, author of the well respected UHMWPE Biomaterials Handbook and Director of the Implant Research Center at Drexel University, has developed a one-stop reference covering the processing and blending of PEEK, its properties and biotribology, and the expanding range of medical implants using PEEK: spinal implants, hip and knee replacement, etc. Full coverage of the properties and applications of PEEK, the leading polymer for spinal implants. PEEK is being used in a wider range of new applications in biomedical engineering, such as hip and knee replacements, and finger joints. These new application areas are explored in detail. Essential reference for plastics enginers, biomedical engineers and orthopedic professionals involved in the use of the PEEK polymer, and medical implants made from PEEK.

Introduction to Integrative Engineering

A Computational Approach to Biomedical Problems

Author: Guigen Zhang

Publisher: CRC Press

ISBN: 1315388456

Category: Medical

Page: 446

View: 3414

This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.

Introduction to Biomaterials

Author: Donglu Shi

Publisher: 清华大学出版社有限公司

ISBN: 9787302108078

Category: Biomaterials

Page: 253

View: 949

This book gives a fundmaentally comprehensive introduction to most of the important biomaterials including ceramics, metals, and polymers.

Protein Physics

A Course of Lectures

Author: Alexei V. Finkelstein,Oleg Ptitsyn

Publisher: Elsevier

ISBN: 0081012365

Category: Science

Page: 528

View: 3433

Protein Physics: A Course of Lectures covers the most general problems of protein structure, folding and function. It describes key experimental facts and introduces concepts and theories, dealing with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states. The book systematically summarizes and presents the results of several decades of worldwide fundamental research on protein physics, structure, and folding, describing many physical models that help readers make estimates and predictions of physical processes that occur in proteins. New to this revised edition is the inclusion of novel information on amyloid aggregation, natively disordered proteins, protein folding in vivo, protein motors, misfolding, chameleon proteins, advances in protein engineering & design, and advances in the modeling of protein folding. Further, the book provides problems with solutions, many new and updated references, and physical and mathematical appendices. In addition, new figures (including stereo drawings, with a special appendix showing how to use them) are added, making this an ideal resource for graduate and advanced undergraduate students and researchers in academia in the fields of biophysics, physics, biochemistry, biologists, biotechnology, and chemistry. Fully revised and expanded new edition based on the latest research developments in protein physics Written by the world's top expert in the field Deals with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states Summarizes, in a systematic form, the results of several decades of worldwide fundamental research on protein physics and their structure and folding Examines experimental data on protein structure in the post-genome era