Applied Spatial Data Analysis with R

Author: Roger S. Bivand,Edzer Pebesma,Virgilio Gómez-Rubio

Publisher: Springer Science & Business Media

ISBN: 1461476186

Category: Medical

Page: 405

View: 7489

Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.

Bayesian Computation with R

Author: Jim Albert

Publisher: Springer Science & Business Media

ISBN: 0387922989

Category: Mathematics

Page: 300

View: 7638

There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN).

Visualize This!

Author: Nathan Yau

Publisher: John Wiley & Sons

ISBN: 3527760229

Category: Statistics / Graphic methods / Data processing

Page: 422

View: 6962

A guide on how to visualise and tell stories with data, providing practical design tips complemented with step-by-step tutorials.

R in a Nutshell

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 5118

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Alexander von Humboldt und die Erfindung der Natur

Author: Andrea Wulf

Publisher: C. Bertelsmann Verlag

ISBN: 3641195500

Category: Biography & Autobiography

Page: 560

View: 9902

Was hat Alexander von Humboldt, der vor mehr als 150 Jahren starb, mit Klimawandel und Nachhaltigkeit zu tun? Der Naturforscher und Universalgelehrte, nach dem nicht nur unzählige Straßen, Pflanzen und sogar ein »Mare« auf dem Mond benannt sind, hat wie kein anderer Wissenschaftler unser Verständnis von Natur als lebendigem Ganzen, als Kosmos, in dem vom Winzigsten bis zum Größten alles miteinander verbunden ist und dessen untrennbarer Teil wir sind, geprägt. Die Historikerin Andrea Wulf stellt in ihrem vielfach preisgekrönten – so auch mit dem Bayerischen Buchpreis 2016 – Buch Humboldts Erfindung der Natur, die er radikal neu dachte, ins Zentrum ihrer Erkundungsreise durch sein Leben und Werk. Sie folgt den Spuren des begnadeten Netzwerkers und zeigt, dass unser heutiges Wissen um die Verwundbarkeit der Erde in Humboldts Überzeugungen verwurzelt ist. Ihm heute wieder zu begegnen, mahnt uns, seine Erkenntnisse endlich zum Maßstab unseres Handelns zu machen – um unser aller Überleben willen.

R für Dummies

Author: Andrie de Vries,Joris Meys

Publisher: John Wiley & Sons

ISBN: 3527812520

Category: Computers

Page: 414

View: 7255

Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.

Numerical Ecology with R

Author: Daniel Borcard,Francois Gillet,Pierre Legendre

Publisher: Springer Science & Business Media

ISBN: 9781441979766

Category: Medical

Page: 306

View: 3392

Numerical Ecology with R provides a long-awaited bridge between a textbook in Numerical Ecology and the implementation of this discipline in the R language. After short theoretical overviews, the authors accompany the users through the exploration of the methods by means of applied and extensively commented examples. Users are invited to use this book as a teaching companion at the computer. The travel starts with exploratory approaches, proceeds with the construction of association matrices, then addresses three families of methods: clustering, unconstrained and canonical ordination, and spatial analysis. All the necessary data files, the scripts used in the chapters, as well as the extra R functions and packages written by the authors, can be downloaded from a web page accessible through the Springer web site(http://adn.biol.umontreal.ca/~numericalecology/numecolR/). This book is aimed at professional researchers, practitioners, graduate students and teachers in ecology, environmental science and engineering, and in related fields such as oceanography, molecular ecology, agriculture and soil science, who already have a background in general and multivariate statistics and wish to apply this knowledge to their data using the R language, as well as people willing to accompany their disciplinary learning with practical applications. People from other fields (e.g. geology, geography, paleoecology, phylogenetics, anthropology, the social and education sciences, etc.) may also benefit from the materials presented in this book. The three authors teach numerical ecology, both theoretical and practical, to a wide array of audiences, in regular courses in their Universities and in short courses given around the world. Daniel Borcard is lecturer of Biostatistics and Ecology and researcher in Numerical Ecology at Université de Montréal, Québec, Canada. François Gillet is professor of Community Ecology and Ecological Modelling at Université de Franche-Comté, Besançon, France. Pierre Legendre is professor of Quantitative Biology and Ecology at Université de Montréal, Fellow of the Royal Society of Canada, and ISI Highly Cited Researcher in Ecology/Environment.

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 7031

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 4704

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Automated Data Collection with R

A Practical Guide to Web Scraping and Text Mining

Author: Simon Munzert,Christian Rubba,Peter Meißner,Dominic Nyhuis

Publisher: John Wiley & Sons

ISBN: 1118834801

Category: Computers

Page: 480

View: 5556

A hands on guide to web scraping and text mining for bothbeginners and experienced users of R Introduces fundamental concepts of the main architecture of theweb and databases and covers HTTP, HTML, XML, JSON, SQL. Provides basic techniques to query web documents and data sets(XPath and regular expressions). An extensive set of exercises are presented to guide thereader through each technique. Explores both supervised and unsupervised techniques as well asadvanced techniques such as data scraping and text management. Case studies are featured throughout along with examples foreach technique presented. R code and solutions to exercises featured in thebook are provided on a supporting website.

Handbook of Applied Spatial Analysis

Software Tools, Methods and Applications

Author: Manfred M. Fischer,Arthur Getis

Publisher: Springer Science & Business Media

ISBN: 9783642036477

Category: Business & Economics

Page: 811

View: 6001

The Handbook is written for academics, researchers, practitioners and advanced graduate students. It has been designed to be read by those new or starting out in the field of spatial analysis as well as by those who are already familiar with the field. The chapters have been written in such a way that readers who are new to the field will gain important overview and insight. At the same time, those readers who are already practitioners in the field will gain through the advanced and/or updated tools and new materials and state-of-the-art developments included. This volume provides an accounting of the diversity of current and emergent approaches, not available elsewhere despite the many excellent journals and te- books that exist. Most of the chapters are original, some few are reprints from the Journal of Geographical Systems, Geographical Analysis, The Review of Regional Studies and Letters of Spatial and Resource Sciences. We let our contributors - velop, from their particular perspective and insights, their own strategies for m- ping the part of terrain for which they were responsible. As the chapters were submitted, we became the first consumers of the project we had initiated. We gained from depth, breadth and distinctiveness of our contributors’ insights and, in particular, the presence of links between them.

Statistics for Geography and Environmental Science

Author: Richard Harris,Claire Jarvis

Publisher: Routledge

ISBN: 1317904397

Category: Science

Page: 280

View: 3493

Statistics are important tools for validating theory, making predictions and engaging in policy research. They help to provide informed commentary about social and environmental issues, and to make the case for change. Knowledge of statistics is therefore a necessary skill for any student of geography or environmental science. This textbook is aimed at students on a degree course taking a module in statistics for the first time. It focuses on analysing, exploring and making sense of data in areas of core interest to physical and human geographers, and to environmental scientists. It covers the subject in a broadly conventional way from descriptive statistics, through inferential statistics to relational statistics but does so with an emphasis on applied data analysis throughout.

Zeitreihenmodelle

Author: Andrew C. Harvey

Publisher: De Gruyter Oldenbourg

ISBN: 9783486230062

Category:

Page: 379

View: 9493

Gegenstand des Werkes sind Analyse und Modellierung von Zeitreihen. Es wendet sich an Studierende und Praktiker aller Disziplinen, in denen Zeitreihenbeobachtungen wichtig sind.

Hands-On Geospatial Analysis with R and QGIS

A beginner’s guide to manipulating, managing, and analyzing spatial data using R and QGIS 3.2.2

Author: Shammunul Islam

Publisher: Packt Publishing Ltd

ISBN: 1788996984

Category: Computers

Page: 354

View: 6864

Practical examples with real-world projects in GIS, Remote sensing, Geospatial data management and Analysis using the R programming language Key Features Understand the basics of R and QGIS to work with GIS and remote sensing data Learn to manage, manipulate, and analyze spatial data using R and QGIS Apply machine learning algorithms to geospatial data using R and QGIS Book Description Managing spatial data has always been challenging and it's getting more complex as the size of data increases. Spatial data is actually big data and you need different tools and techniques to work your way around to model and create different workflows. R and QGIS have powerful features that can make this job easier. This book is your companion for applying machine learning algorithms on GIS and remote sensing data. You’ll start by gaining an understanding of the nature of spatial data and installing R and QGIS. Then, you’ll learn how to use different R packages to import, export, and visualize data, before doing the same in QGIS. Screenshots are included to ease your understanding. Moving on, you’ll learn about different aspects of managing and analyzing spatial data, before diving into advanced topics. You’ll create powerful data visualizations using ggplot2, ggmap, raster, and other packages of R. You’ll learn how to use QGIS 3.2.2 to visualize and manage (create, edit, and format) spatial data. Different types of spatial analysis are also covered using R. Finally, you’ll work with landslide data from Bangladesh to create a landslide susceptibility map using different machine learning algorithms. By reading this book, you’ll transition from being a beginner to an intermediate user of GIS and remote sensing data in no time. What you will learn Install R and QGIS Get familiar with the basics of R programming and QGIS Visualize quantitative and qualitative data to create maps Find out the basics of raster data and how to use them in R and QGIS Perform geoprocessing tasks and automate them using the graphical modeler of QGIS Apply different machine learning algorithms on satellite data for landslide susceptibility mapping and prediction Who this book is for This book is great for geographers, environmental scientists, statisticians, and every professional who deals with spatial data. If you want to learn how to handle GIS and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful but is not necessary.

An Introduction to R for Spatial Analysis and Mapping

Author: Chris Brunsdon,Lex Comber

Publisher: SAGE

ISBN: 152645422X

Category: Social Science

Page: 336

View: 8069

This is a new edition of the accessible and student-friendly 'how to' for anyone using R for the first time, for use in spatial statistical analysis, geocomputation and digital mapping. The authors, once again, take readers from ‘zero to hero’, updating the now standard text to further enable practical R applications in GIS, spatial analyses, spatial statistics, web-scraping and more. Revised and updated, each chapter includes: example data and commands to explore hands-on; scripts and coding to exemplify specific functionality; self-contained exercises for students to work through; embedded code within the descriptive text. The new edition includes detailed discussion of new and emerging packages within R like sf, ggplot, tmap, making it the go to introduction for all researchers collecting and using data with location attached. This is the introduction to the use of R for spatial statistical analysis, geocomputation, and GIS for all researchers - regardless of discipline - collecting and using data with location attached.

Graphische Semiologie

Diagramme, Netze, Karten

Author: Jacques Bertin

Publisher: Walter de Gruyter

ISBN: 3110834901

Category: Science

Page: 430

View: 1277

Programmieren mit R

Author: Uwe Ligges

Publisher: Springer-Verlag

ISBN: 3540799982

Category: Computers

Page: 251

View: 8490

R ist eine objektorientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik. Ausführlich führt der Autor in die Grundlagen ein und vermittelt eingängig die Struktur der Sprache. So ermöglicht er Lesern den leichten Einstieg: eigene Methoden umsetzen, Objektklassen definieren und Pakete aus Funktionen und zugehöriger Dokumentation zusammenstellen. Detailliert beschreibt er die enormen Grafikfähigkeiten von R. Für alle, die R als flexibles Werkzeug zur Datenanalyse und -visualisierung einsetzen. In 2. Auflage mit vielen Verbesserungen und Neuerungen von R-2.3.x und weiteren von Lesern gewünschten Ergänzungen.

Statistical Data Analysis Explained

Applied Environmental Statistics with R

Author: Clemens Reimann,Peter Filzmoser,Robert Garrett,Rudolf Dutter

Publisher: John Wiley & Sons

ISBN: 1119965284

Category: Science

Page: 362

View: 2592

Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.