Applied Nonparametric Statistics in Reliability

Author: M. Luz Gámiz

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 230

View: 996

Nonparametric statistics has probably become the leading methodology for researchers performing data analysis. It is nevertheless true that, whereas these methods have already proved highly effective in other applied areas of knowledge such as biostatistics or social sciences, nonparametric analyses in reliability currently form an interesting area of study that has not yet been fully explored. Applied Nonparametric Statistics in Reliability is focused on the use of modern statistical methods for the estimation of dependability measures of reliability systems that operate under different conditions. The scope of the book includes: smooth estimation of the reliability function and hazard rate of non-repairable systems; study of stochastic processes for modelling the time evolution of systems when imperfect repairs are performed; nonparametric analysis of discrete and continuous time semi-Markov processes; isotonic regression analysis of the structure function of a reliability system, and lifetime regression analysis. Besides the explanation of the mathematical background, several numerical computations or simulations are presented as illustrative examples. The corresponding computer-based methods have been implemented using R and MATLAB®. A concrete modelling scheme is chosen for each practical situation and, in consequence, a nonparametric inference procedure is conducted. Applied Nonparametric Statistics in Reliability will serve the practical needs of scientists (statisticians and engineers) working on applied reliability subjects.

Applied Nonparametric Statistics in Reliability

Statistics, Statistics

Author: CTI Reviews

Publisher: Cram101 Textbook Reviews

ISBN:

Category: Education

Page: 38

View: 665

Facts101 is your complete guide to Applied Nonparametric Statistics in Reliability. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

Nonparametric Statistical Methods

Author: Myles Hollander

Publisher: John Wiley & Sons

ISBN:

Category: Mathematics

Page: 848

View: 972

Praise for the Second Edition “This book should be an essential part of the personallibrary of every practicingstatistician.”—Technometrics Thoroughly revised and updated, the new edition of NonparametricStatistical Methods includes additional modern topics andprocedures, more practical data sets, and new problems fromreal-life situations. The book continues to emphasize theimportance of nonparametric methods as a significant branch ofmodern statistics and equips readers with the conceptual andtechnical skills necessary to select and apply the appropriateprocedures for any given situation. Written by leading statisticians, Nonparametric StatisticalMethods, Third Edition provides readers with crucialnonparametric techniques in a variety of settings, emphasizing theassumptions underlying the methods. The book provides an extensivearray of examples that clearly illustrate how to use nonparametricapproaches for handling one- or two-sample location and dispersionproblems, dichotomous data, and one-way and two-way layoutproblems. In addition, the Third Edition features: The use of the freely available R software to aid incomputation and simulation, including many new R programs writtenexplicitly for this new edition New chapters that address density estimation, wavelets,smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science,astronomy, biology, criminology, education, engineering,environmental science, geology, home economics, medicine,oceanography, physics, psychology, sociology, and spacescience Nonparametric Statistical Methods, Third Edition is anexcellent reference for applied statisticians and practitioners whoseek a review of nonparametric methods and their relevantapplications. The book is also an ideal textbook forupper-undergraduate and first-year graduate courses in appliednonparametric statistics.

Applied Nonparametric Statistical Methods, Fourth Edition

Author: Peter Sprent

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 544

View: 721

While preserving the clear, accessible style of previous editions, Applied Nonparametric Statistical Methods, Fourth Edition reflects the latest developments in computer-intensive methods that deal with intractable analytical problems and unwieldy data sets. Reorganized and with additional material, this edition begins with a brief summary of some relevant general statistical concepts and an introduction to basic ideas of nonparametric or distribution-free methods. Designed experiments, including those with factorial treatment structures, are now the focus of an entire chapter. The text also expands coverage on the analysis of survival data and the bootstrap method. The new final chapter focuses on important modern developments, such as large sample methods and computer-intensive applications. Keeping mathematics to a minimum, this text introduces nonparametric methods to undergraduate students who are taking either mainstream statistics courses or statistics courses within other disciplines. By giving the proper attention to data collection and the interpretation of analyses, it provides a full introduction to nonparametric methods.

Nonparametric Statistics for Health Care Research

Statistics for Small Samples and Unusual Distributions

Author: Marjorie A. Pett

Publisher: SAGE Publications

ISBN:

Category: Social Science

Page: 472

View: 119

What do you do when you realize that the data set from the study that you have just completed violates the sample size or other requirements needed to apply parametric statistics? Nonparametric Statistics for Health Care Research by Marjorie A. Pett was developed for such scenarios—research undertaken with limited funds, often using a small sample size, with the primary objective of improving client care and obtaining better client outcomes. Covering the most commonly used nonparametric statistical techniques available in statistical packages and on open-resource statistical websites, this well-organized and accessible Second Edition helps readers, including those beyond the health sciences field, to understand when to use a particular nonparametric statistic, how to generate and interpret the resulting computer printouts, and how to present the results in table and text format.

Nonparametric Statistics with Applications to Science and Engineering

Author: Paul H. Kvam

Publisher: John Wiley & Sons

ISBN:

Category: Mathematics

Page: 448

View: 569

A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.

Handbook of Parametric and Nonparametric Statistical Procedures

Third Edition

Author: David J. Sheskin

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 1193

View: 410

Called the "bible of applied statistics," the first two editions of the Handbook of Parametric and Nonparametric Statistical Procedures were unsurpassed in accessibility, practicality, and scope. Now author David Sheskin has gone several steps further and added even more tests, more examples, and more background information-more than 200 pages of new material. The Third Edition provides unparalleled, up-to-date coverage of over 130 parametric and nonparametric statistical procedures as well as many practical and theoretical issues relevant to statistical analysis. If you need to... Decide what method of analysis to use Use a particular test for the first time Distinguish acceptable from unacceptable research Interpret and better understand the results of pubished studies ...the Handbook of Parametric and Nonparametric Statistical Procedures will help you get the job done.

Applied Reliability Engineering and Risk Analysis

Probabilistic Models and Statistical Inference

Author: Ilia B. Frenkel

Publisher: John Wiley & Sons

ISBN:

Category: Technology & Engineering

Page: 456

View: 782

This complete resource on the theory and applications of reliability engineering, probabilistic models and risk analysis consolidates all the latest research, presenting the most up-to-date developments in this field. With comprehensive coverage of the theoretical and practical issues of both classic and modern topics, it also provides a unique commemoration to the centennial of the birth of Boris Gnedenko, one of the most prominent reliability scientists of the twentieth century. Key features include: expert treatment of probabilistic models and statistical inference from leading scientists, researchers and practitioners in their respective reliability fields detailed coverage of multi-state system reliability, maintenance models, statistical inference in reliability, systemability, physics of failures and reliability demonstration many examples and engineering case studies to illustrate the theoretical results and their practical applications in industry Applied Reliability Engineering and Risk Analysis is one of the first works to treat the important areas of degradation analysis, multi-state system reliability, networks and large-scale systems in one comprehensive volume. It is an essential reference for engineers and scientists involved in reliability analysis, applied probability and statistics, reliability engineering and maintenance, logistics, and quality control. It is also a useful resource for graduate students specialising in reliability analysis and applied probability and statistics. Dedicated to the Centennial of the birth of Boris Gnedenko, renowned Russian mathematician and reliability theorist

Non-Parametric Statistical Diagnosis

Problems and Methods

Author: E. Brodsky

Publisher: Springer Science & Business Media

ISBN:

Category: Business & Economics

Page: 452

View: 908

"Much attention is paid to applications in such diverse areas as biology (EECs) and economics."--BOOK JACKET.

Applied Statistics: From Bivariate Through Multivariate Techniques

From Bivariate Through Multivariate Techniques

Author: Rebecca M. Warner

Publisher: SAGE

ISBN:

Category: Mathematics

Page: 1172

View: 625

Rebecca M. Warner's Applied Statistics: From Bivariate Through Multivariate Techniques, Second Edition provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked to think about the meaning of equations. Each chapter presents a complete empirical research example to illustrate the application of a specific method. Although SPSS examples are used throughout the book, the conceptual material will be helpful for users of different programs. Each chapter has a glossary and comprehension questions.