Molecular Clusters of the Main Group Elements

Author: Matthias Driess

Publisher: John Wiley & Sons


Category: Science

Page: 460

View: 641

With more than 20 contributions from leading research groups, this book provides essential information for chemists and materials scientists working with molecular clusters. It treats both homonuclear and heteronuclear clusters, including: the theory and concepts in main-group cluster chemistry, * novel boranes and heteroboranes, * silicon/germanium/tin clusters, * alkali metal suboxides, * clusters in alloys with mercury, * chalkogen clusters * and numerous other compound classes. The whole is illustrated by examples of the great potential for technical applications such as electron storage, cancer therapy and in optoelectronic devices. Its systematic coverage of all relevant main group elements makes this the prime reference source in the field.

Catalog of Copyright Entries. Third Series

1970: January-June

Author: Library of Congress. Copyright Office

Publisher: Copyright Office, Library of Congress


Category: Copyright

Page: 1838

View: 629


From Materials to Devices

Author: Claudia Felser

Publisher: Springer Science & Business Media


Category: Technology & Engineering

Page: 369

View: 602

Spintronics is an emerging technology exploiting the spin degree of freedom and has proved to be very promising for new types of fast electronic devices. Amongst the anticipated advantages of spintronics technologies, researchers have identified the non-volatile storage of data with high density and low energy consumption as particularly relevant. This monograph examines the concept of half-metallic compounds perspectives to obtain novel solutions and discusses several oxides such as perovskites, double perovskites and CrO2 as well as Heusler compounds. Such materials can be designed and made with high spin polarization and, especially in the case of Heusler compounds, many material-related problems present in current-day 3d metal systems, can be overcome. Spintronics: From Materials to Devices provides an insight into the current research on Heusler compounds and offers a general understanding of structure–property relationships, including the influence of disorder and correlations on the electronic structure and interfaces. Spintronics devices such as magnetic tunnel junctions (MTJs) and giant magnetoresistance (GMR) devices, with current perpendicular to the plane, in which Co2 based Heusler compounds are used as new electrode materials, are also introduced. From materials design by theoretical methods and the preparation and properties of the materials to the production of thin films and devices, this monograph represents a valuable guide to both novices and experts in the fields of Chemistry, Physics, and Materials Science.

Organosilicon Chemistry III

From Molecules to Materials

Author: Norbert Auner

Publisher: John Wiley & Sons


Category: Science

Page: 742

View: 936

Organosilicon Chemistry at its best ...((kursiv)) Like its two hugely successful predecessors, the third volume again presents the latest developments in a rapidly developing field of industsrial and academic research. The contributions from approx. 80 internationally renowned experts and researchers in this fascinating part of the rapidly growing field of main group chemistry describe current trends in organosilicon chemistry and provide summaries of the latest (1997!) knowledge in this area. To facilitate access to the ongoing research this volume is split into two parts, each with a comprehensive introduction: Part 1: Fascinating Organosilicon Compounds Part 2: Silicon Based Materials