Analysis

Author: Terence Tao

Publisher: N.A

ISBN: 9788185931951

Category: Mathematics

Page: 566

View: 4497

Presents an introduction to real analysis. This title includes material that starts at the very beginning-the construction of number systems and set theory, then goes on to the basics of analysis, through to power series, several variable calculus and Fourier analysis, and finally to the Lebesgue integral.

Analysis II

Third Edition

Author: Terence Tao

Publisher: Springer

ISBN: 9811018049

Category: Mathematics

Page: 220

View: 1743

This is part two of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.

Solving Mathematical Problems

A Personal Perspective

Author: Terence Tao

Publisher: OUP Oxford

ISBN: 0199205612

Category: Mathematics

Page: 103

View: 6425

Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the tactics involved in solving mathematical problems at the Mathematical Olympiad level. With numerous exercises and assuming only basic mathematics, this text is ideal for students of14 years and above in pure mathematics.

A Companion to Analysis

A Second First and First Second Course in Analysis

Author: Thomas William Körner

Publisher: American Mathematical Soc.

ISBN: 0821834479

Category: Mathematics

Page: 590

View: 773

This book not only provides a lot of solid information about real analysis, it also answers those questions which students want to ask but cannot figure how to formulate. To read this book is to spend time with one of the modern masters in the subject. --Steven G. Krantz, Washington University, St. Louis One of the major assets of the book is Korner's very personal writing style. By keeping his own engagement with the material continually in view, he invites the reader to a similarly high level of involvement. And the witty and erudite asides that are sprinkled throughout the book are a real pleasure. --Gerald Folland, University of Washingtion, Seattle Many students acquire knowledge of a large number of theorems and methods of calculus without being able to say how they hang together. This book provides such students with the coherent account that they need. A Companion to Analysis explains the problems which must be resolved in order to obtain a rigorous development of the calculus and shows the student how those problems are dealt with. Starting with the real line, it moves on to finite dimensional spaces and then to metric spaces. Readers who work through this text will be ready for such courses as measure theory, functional analysis, complex analysis and differential geometry. Moreover, they will be well on the road which leads from mathematics student to mathematician. Able and hard working students can use this book for independent study, or it can be used as the basis for an advanced undergraduate or elementary graduate course. An appendix contains a large number of accessible but non-routine problems to improve knowledge and technique.

A Course in Multivariable Calculus and Analysis

Author: Sudhir R. Ghorpade,Balmohan V. Limaye

Publisher: Springer Science & Business Media

ISBN: 1441916210

Category: Mathematics

Page: 475

View: 3113

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.

Higher Order Fourier Analysis

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821889869

Category: Mathematics

Page: 187

View: 8536

Traditional Fourier analysis, which has been remarkably effective in many contexts, uses linear phase functions to study functions. Some questions, such as problems involving arithmetic progressions, naturally lead to the use of quadratic or higher order phases. Higher order Fourier analysis is a subject that has become very active only recently. Gowers, in groundbreaking work, developed many of the basic concepts of this theory in order to give a new, quantitative proof of Szemeredi's theorem on arithmetic progressions. However, there are also precursors to this theory in Weyl's classical theory of equidistribution, as well as in Furstenberg's structural theory of dynamical systems. This book, which is the first monograph in this area, aims to cover all of these topics in a unified manner, as well as to survey some of the most recent developments, such as the application of the theory to count linear patterns in primes. The book serves as an introduction to the field, giving the beginning graduate student in the subject a high-level overview of the field. The text focuses on the simplest illustrative examples of key results, serving as a companion to the existing literature on the subject. There are numerous exercises with which to test one's knowledge.

An Introduction to Measure Theory

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821869191

Category: Mathematics

Page: 206

View: 4714

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Caratheodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

An Expedition to Geometry

Author: S Kumaresan,G. Santhanam

Publisher: Springer

ISBN: 938627924X

Category: Mathematics

Page: 238

View: 1384

Including Affine and projective classification of Conics, 2 point homogeneity's of the planes, essential isometrics, non euclidean plan geometrics, in this book, the treatment of Geometry goes beyond the Kleinian views.

Topics in Random Matrix Theory

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821874306

Category: Mathematics

Page: 282

View: 7642

The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.

Elementary Methods in Number Theory

Author: Melvyn B. Nathanson

Publisher: Springer Science & Business Media

ISBN: 0387227385

Category: Mathematics

Page: 514

View: 7139

This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.

Introduction to Probability and Measure

Author: K.R. Parthasarathy

Publisher: Springer

ISBN: 9386279274

Category: Mathematics

Page: 354

View: 3643

According to a remark attributed to Mark Kac 'Probability Theory is a measure theory with a soul'. This book with its choice of proofs, remarks, examples and exercises has been prepared taking both these aesthetic and practical aspects into account.

Epsilon of Room, Two

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821852809

Category: Mathematics

Page: 248

View: 1779

There are many bits and pieces of folklore in mathematics that are passed down from advisor to student, or from collaborator to collaborator, but which are too fuzzy and nonrigorous to be discussed in the formal literature. Traditionally, it was a matter of luck and location as to who learned such ``folklore mathematics''. But today, such bits and pieces can be communicated effectively and efficiently via the semiformal medium of research blogging. This book grew from such a blog. In 2007 Terry Tao began a mathematical blog to cover a variety of topics, ranging from his own research and other recent developments in mathematics, to lecture notes for his classes, to nontechnical puzzles and expository articles. The first two years of the blog have already been published by the American Mathematical Society. The posts from the third year are being published in two volumes. This second volume contains a broad selection of mathematical expositions and self-contained technical notes in many areas of mathematics, such as logic, mathematical physics, combinatorics, number theory, statistics, theoretical computer science, and group theory. Tao has an extraordinary ability to explain deep results to his audience, which has made his blog quite popular. Some examples of this facility in the present book are the tale of two students and a multiple-choice exam being used to explain the $P = NP$ conjecture and a discussion of "no self-defeating object" arguments that starts from a schoolyard number game and ends with results in logic, game theory, and theoretical physics. The first volume consists of a second course in real analysis, together with related material from the blog, and it can be read independently.

Mathematical Analysis II

Author: Vladimir A. Zorich,R. Cooke

Publisher: Springer Science & Business Media

ISBN: 9783540406334

Category: Mathematics

Page: 688

View: 5295

This softcover edition of a very popular work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds, Fourier, Laplace, and Legendre transforms, elliptic functions and distributions.

Real Analysis: A Comprehensive Course in Analysis, Part 1

Author: Barry Simon

Publisher: American Mathematical Soc.

ISBN: 1470410990

Category: Mathematical analysis

Page: 789

View: 536

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.

A First Course in Graph Theory and Combinatorics

Author: Sebastian M. Cioabă

Publisher: Springer

ISBN: 9386279398

Category: Mathematics

Page: 186

View: 4068

The concept of a graph is fundamental in mathematics since it conveniently encodes diverse relations and facilitates combinatorial analysis of many complicated counting problems. In this book, the authors have traced the origins of graph theory from its humble beginnings of recreational mathematics to its modern setting for modeling communication networks as is evidenced by the World Wide Web graph used by many Internet search engines. This book is an introduction to graph theory and combinatorial analysis. It is based on courses given by the second author at Queen's University at Kingston, Ontario, Canada between 2002 and 2008. The courses were aimed at students in their final year of their undergraduate program.

Harmonic Analysis

From Fourier to Wavelets

Author: María Cristina Pereyra,Lesley A. Ward

Publisher: American Mathematical Soc.

ISBN: 0821875663

Category: Mathematics

Page: 410

View: 6483

In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. In this book, the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. They present for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization). While concentrating on the Fourier and Haar cases, the book touches on aspects of the world that lies between these two different ways of decomposing functions: time-frequency analysis (wavelets). Both finite and continuous perspectives are presented, allowing for the introduction of discrete Fourier and Haar transforms and fast algorithms, such as the Fast Fourier Transform (FFT) and its wavelet analogues. The approach combines rigorous proof, inviting motivation, and numerous applications. Over 250 exercises are included in the text. Each chapter ends with ideas for projects in harmonic analysis that students can work on independently. This book is published in cooperation with IAS/Park City Mathematics Institute.

A Course in Real Analysis

Author: Hugo D. Junghenn

Publisher: CRC Press

ISBN: 148221928X

Category: Mathematics

Page: 613

View: 7188

A Course in Real Analysis provides a rigorous treatment of the foundations of differential and integral calculus at the advanced undergraduate level. The book’s material has been extensively classroom tested in the author’s two-semester undergraduate course on real analysis at The George Washington University. The first part of the text presents the calculus of functions of one variable. This part covers traditional topics, such as sequences, continuity, differentiability, Riemann integrability, numerical series, and the convergence of sequences and series of functions. It also includes optional sections on Stirling’s formula, functions of bounded variation, Riemann–Stieltjes integration, and other topics. The second part focuses on functions of several variables. It introduces the topological ideas (such as compact and connected sets) needed to describe analytical properties of multivariable functions. This part also discusses differentiability and integrability of multivariable functions and develops the theory of differential forms on surfaces in Rn. The third part consists of appendices on set theory and linear algebra as well as solutions to some of the exercises. A full solutions manual offers complete solutions to all exercises for qualifying instructors. With clear proofs, detailed examples, and numerous exercises, this textbook gives a thorough treatment of the subject. It progresses from single variable to multivariable functions, providing a logical development of material that will prepare students for more advanced analysis-based courses.

Elementary Analysis

The Theory of Calculus

Author: Kenneth A. Ross

Publisher: Springer Science & Business Media

ISBN: 1461462711

Category: Mathematics

Page: 412

View: 7201

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Analysis II

Third Edition

Author: Terence Tao

Publisher: Hindustan Book Agency

ISBN: 9789380250656

Category: Mathematics

Page: 347

View: 5259

This is part two of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.

Inequalities

An Approach Through Problems

Author: B.J. Venkatachala

Publisher: Springer

ISBN: 9811087326

Category: Mathematics

Page: 519

View: 1870

This book discusses about the basic topics on inequalities and their applications. These include the arithmetic mean–geometric mean inequality, Cauchy–Schwarz inequality, Chebyshev inequality, rearrangement inequality, convex and concave functions and Muirhead's theorem. The book contains over 400 problems with their solutions. A chapter on geometric inequalities is a special feature of this book. Most of these problems are from International Mathematical Olympiads and from many national mathematical Olympiads. The book is intended to help students who are preparing for various mathematical competitions. It is also a good source book for graduate students who are consolidating their knowledge of inequalities and their applications.