Analysis II

Third Edition

Author: Terence Tao

Publisher: Springer

ISBN: 9811018049

Category: Mathematics

Page: 220

View: 2809

This is part two of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.

Real Analysis: A Comprehensive Course in Analysis, Part 1

Author: Barry Simon

Publisher: American Mathematical Soc.

ISBN: 1470410990

Category: Mathematical analysis

Page: 789

View: 2989

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.

Analysis II

Author: Vladimir A. Zorich

Publisher: Springer

ISBN: 9783540462316

Category: Mathematics

Page: 708

View: 7780

Ausführlich, klar, exakt, solide: die Anfänge der Analysis in 2 Bänden. Von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie u.a. Differenzialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Deutlich auf naturwissenschaftliche Fragen ausgerichtet, erläutert dieses Werk detailliert Begriffe, Inhalte und Sätze der Integral- und Differenzialrechnung. Die Fülle hilfreicher Beispiele, Aufgaben und Anwendungen ist selten in Analysisbüchern zu finden. Band 2 beschreibt den heutigen Stand der klassischen Analysis.

Harmonic Analysis

From Fourier to Wavelets

Author: María Cristina Pereyra,Lesley A. Ward

Publisher: American Mathematical Soc.

ISBN: 0821875663

Category: Mathematics

Page: 410

View: 471

In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. In this book, the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. They present for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization). While concentrating on the Fourier and Haar cases, the book touches on aspects of the world that lies between these two different ways of decomposing functions: time-frequency analysis (wavelets). Both finite and continuous perspectives are presented, allowing for the introduction of discrete Fourier and Haar transforms and fast algorithms, such as the Fast Fourier Transform (FFT) and its wavelet analogues. The approach combines rigorous proof, inviting motivation, and numerous applications. Over 250 exercises are included in the text. Each chapter ends with ideas for projects in harmonic analysis that students can work on independently. This book is published in cooperation with IAS/Park City Mathematics Institute.


Author: Terence Tao

Publisher: N.A

ISBN: 9788185931944

Category: Mathematics

Page: 566

View: 5693

Suitable for undergraduates who have already been exposed to calculus, this title includes material that starts at the very beginning - the construction of number systems and set theory, then goes on to the basics of analysis, through to power series, several variable calculus and Fourier analysis, and finally to the Lebesgue integral.

Analysis I

Author: Martin Barner,Friedrich Flohr

Publisher: Walter de Gruyter

ISBN: 9783110167795

Category: Language Arts & Disciplines

Page: 544

View: 4172

Mathematical Analysis II

Author: Vladimir A. Zorich,R. Cooke

Publisher: Springer Science & Business Media

ISBN: 9783540406334

Category: Mathematics

Page: 688

View: 8908

An entire generation of mathematicians has grown up during the time - tween the appearance of the ?rst edition of this textbook and the publication of the fourth edition, a translation of which is before you. The book is fam- iar to many people, who either attended the lectures on which it is based or studied out of it, and who now teach others in universities all over the world. I am glad that it has become accessible to English-speaking readers. This textbook consists of two parts. It is aimed primarily at university students and teachers specializing in mathematics and natural sciences, and at all those who wish to see both the rigorous mathematical theory and examplesofitse?ectiveuseinthesolutionofrealproblemsofnaturalscience. The textbook exposes classical analysis as it is today, as an integral part of Mathematics in its interrelations with other modern mathematical courses such as algebra, di?erential geometry, di?erential equations, complex and functional analysis.

Mathematical Analysis II

Author: Claudio Canuto,Anita Tabacco

Publisher: Springer

ISBN: 3319127578

Category: Mathematics

Page: 559

View: 5470

The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, familiarise with the corresponding key techniques and find the proofs of the main results. The second level enables the strongly motivated reader to explore further into the subject, by studying also the material contained in the appendices. Definitions are enriched by many examples, which illustrate the properties discussed. A host of solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a second course of Mathematical Analysis.

Analysis II

Author: Herbert Amann,Joachim Escher

Publisher: Springer Science & Business Media

ISBN: 3764371056

Category: Mathematics

Page: 415

View: 2449

Der zweite Band dieser Einführung in die Analysis behandelt die Integrationstheorie von Funktionen einer Variablen, die mehrdimensionale Differentialrechnung und die Theorie der Kurven und Kurvenintegrale. Der im ersten Band begonnene moderne und klare Aufbau wird konsequent fortgesetzt. Dadurch wird ein tragfähiges Fundament geschaffen, das es erlaubt, interessante Anwendungen zu behandeln, die zum Teil weit über den in der üblichen Lehrbuchliteratur behandelten Stoff hinausgehen. Zahlreiche Übungsaufgaben von unterschiedlichem Schwierigkeitsgrad und viele informative Abbildungen runden dieses Lehrbuch ab.

Analysis 2

Differentialrechnung im Rn, gewöhnliche Differentialgleichungen

Author: Otto Forster

Publisher: Springer-Verlag

ISBN: 3322919080

Category: Mathematics

Page: 164

View: 3626

Der vorliegende Band stellt den zweiten Teil eines Analysis-Kurses für Studierende der Mathematik und Physik dar. Das erste Kapitel über Differentialrechnung im R^n behandelt nach einer Einführung in die topologischen Grundbegriffe Kurven im R^n, partielle Ableitungen, totale Differenzierbarkeit, Taylorsche Formel, Maxima und Minima von Funktionen mehrerer Veränderlichen, implizite Funktionen und parameterabhängige Integrale. Das zweite Kapitel gibt eine kurze Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Nach dem Beweis des allgemeinen Existenz- und Eindeutigkeitssatzes und der Besprechung der Methode der Trennung der Variablen wird besonders auf die Theorie der linearen Differentialgleichungen eingegangen.

Analysis 1

Author: Konrad Königsberger

Publisher: Springer-Verlag

ISBN: 3642973884

Category: Mathematics

Page: 360

View: 2758

In kurzer und prägnanter Form wird die Analysis der Grundvorlesung vorgestellt. Im Gegensatz zu den Analysisbänden von Blatter und Forster finden sich hier viele historische Anmerkungen. Außerdem wird viel Wert auf sachbezogene Motivation gelegt. Zusammen mit dem zum Wintersemester erscheinenden Band Analysis 2 eignet sich dieses Werk hervorragend zur Prüfungsvorbereitung nicht nur für Mathematikstudenten, sondern gerade auch für Informatik-, Physik- und Technikstudenten.

Analysis 1

Author: Oliver Deiser

Publisher: Springer-Verlag

ISBN: 3642385141

Category: Mathematics

Page: 467

View: 1864

Das Buch, das nun in verbesserter und erweiterter Auflage vorliegt, gibt eine systematische und verständliche Einführung in die folgenden Themen der mathematischen Analysis: Reelle und komplexe Zahlen, Folgen und Reihen, Stetige Funktionen, Differentiation. Es wendet sich speziell an Studierende des Lehramts Mathematik an Gymnasien, ohne dabei den Anschluss an das Fachstudium zu verlieren. Neben etwa 200 Übungsaufgaben enthält es zwölf Sektionen mit Ergänzungsübungen, die die Anbindung des neu erlernten Wissens an das Schulwissen erleichtern. In einem zweiten Band werden neben einer ausführlichen Darstellung der Integration, topologischer Grundbegriffe und der mehrdimensionalen Differentiation auch Fourier-Reihen, gewöhnliche Differentialgleichungen und die mehrdimensionale Integration im Überblick vorgestellt.

Angewandte Mathematik: Body and Soul

Band 2: Integrale und Geometrie in IRn

Author: Kenneth Eriksson,Donald Estep,Claes Johnson

Publisher: Springer-Verlag

ISBN: 3540269509

Category: Mathematics

Page: 362

View: 6017

"Angewandte Mathematik: Body & Soul" ist ein neuer Grundkurs in der Mathematikausbildung für Studienanfänger in den Naturwissenschaften, der Technik, und der Mathematik, der an der Chalmers Tekniska Högskola in Göteborg entwickelt wurde. Er besteht aus drei Bänden sowie Computer-Software. Das Projekt ist begründet in der Computerrevolution, die ihrerseits völlig neue Möglichkeiten des wissenschaftlichen Rechnens in der Mathematik, den Naturwissenschaften und im Ingenieurwesen eröffnet hat. Es besteht aus einer Synthese der mathematischen Analysis (Soul) mit der numerischen Berechnung (Body) sowie den Anwendungen. Die Bände I-III geben eine moderne Version der Analysis und der linearen Algebra wieder, einschließlich konstruktiver numerischer Techniken und Anwendungen, zugeschnitten auf Anfängerprogramme im Maschinenbau und den Naturwissenschaften. Weitere Bände behandeln Themen wie z.B. dynamische Systeme, Strömungsdynamik, Festkörpermechanik und Elektromagnetismus. Dieser Band entwickelt das Riemann-Integral, um eine Funktion zu einer gegebenen Ableitung zu bestimmen. Darauf aufbauend werden Differentialgleichungen und Anfangswertprobleme mit einer Vielzahl anschaulicher Anwendungen behandelt. Die lineare Algebra wird auf n-dimensionale Räume verallgemeinert, wobei wiederum dem praktischen Umgang und numerischen Lösungstechniken besonderer Platz eingeräumt wird. Die Autoren sind führende Experten im Gebiet des wissenschaftlichen Rechnens und haben schon mehrere erfolgreiche Bücher geschrieben. "[......] Oh, by the way, I suggest immediate purchase of all three volumes!" The Mathematical Association of America Online, 7.7.04


Author: Klaus-Jürgen Bathe

Publisher: DrMaster Publications

ISBN: 9783540668060

Category: Technology & Engineering

Page: 1253

View: 3974

Dieses Lehr- und Handbuch behandelt sowohl die elementaren Konzepte als auch die fortgeschrittenen und zukunftsweisenden linearen und nichtlinearen FE-Methoden in Statik, Dynamik, Festkörper- und Fluidmechanik. Es wird sowohl der physikalische als auch der mathematische Hintergrund der Prozeduren ausführlich und verständlich beschrieben. Das Werk enthält eine Vielzahl von ausgearbeiteten Beispielen, Rechnerübungen und Programmlisten. Als Übersetzung eines erfolgreichen amerikanischen Lehrbuchs hat es sich in zwei Auflagen auch bei den deutschsprachigen Ingenieuren etabliert. Die umfangreichen Änderungen gegenüber der Vorauflage innerhalb aller Kapitel - vor allem aber der fortgeschrittenen - spiegeln die rasche Entwicklung innerhalb des letzten Jahrzehnts auf diesem Gebiet wieder. TOC:Eine Einführung in den Gebrauch von Finite-Elemente-Verfahren.-Vektoren, Matrizen und Tensoren.-Einige Grundbegriffe ingenieurwissenschaftlicher Berechnungen.-Formulierung der Methode der finiten Elemente.-Formulierung und Berechnung von isoparametrischen Finite-Elemente-Matrizen.-Nichtlineare Finite-Elemente-Berechnungen in der Festkörper- und Strukturmechanik.-Finite-Elemente-Berechnungen von Wärmeübertragungs- und Feldproblemen.-Lösung von Gleichgewichtsbeziehungen in statischen Berechnungen.-Lösung von Bewegungsgleichungen in kinetischen Berechnungen.-Vorbemerkungen zur Lösung von Eigenproblemen.-Lösungsverfahren für Eigenprobleme.-Implementierung der Finite-Elemente-Methode.

Mathematical Analysis II

Author: V. A. Zorich

Publisher: Springer

ISBN: 3662489937

Category: Mathematics

Page: 720

View: 4529

This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first English editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey establishes important conceptual connections between analysis and other parts of mathematics. This second volume presents classical analysis in its current form as part of a unified mathematics. It shows how analysis interacts with other modern fields of mathematics such as algebra, differential geometry, differential equations, complex analysis, and functional analysis. This book provides a firm foundation for advanced work in any of these directions.

Real and Abstract Analysis

A modern treatment of the theory of functions of a real variable

Author: Edwin Hewitt,Karl Stromberg

Publisher: Springer-Verlag

ISBN: 3662297949

Category: Mathematics

Page: 476

View: 9645


überraschende Antworten auf alltägliche Lebensfragen ; [warum wohnen Drogenhändler bei ihren Müttern? Führt mehr Polizei zu weniger Kriminalität? Sind Swimmingpools gefährlicher als Revolver? Macht gute Erziehung glücklich?]

Author: Steven D. Levitt,Stephen J. Dubner

Publisher: N.A

ISBN: 9783442154517


Page: 411

View: 2986

Sind Swimmingpools gefährlicher als Revolver? Warum betrügen Lehrer? Der preisgekrönte Wirtschaftswissenschaftler Steven D. Levitt kombiniert Statistiken, deren Zusammenführung und Gegenüberstellung auf den ersten Blick absurd erscheint, durch seine Analysetechnik aber zu zahlreichen Aha-Effekten führt. Ein äußerst unterhaltsamer Streifzug durch die Mysterien des Alltags, der uns schmunzeln lässt und stets über eindimensionales Denken hinausführt.

Einführung in die Geometrie und Topologie

Author: Werner Ballmann

Publisher: Springer-Verlag

ISBN: 3034809018

Category: Mathematics

Page: 162

View: 1734

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.

Analysis 2. Deutsche Ausgabe

Author: Herbert Amann,Joachim Escher

Publisher: Birkhauser

ISBN: 9783764361334

Category: Mathematics

Page: 412

View: 4011

Der zweite Band dieser Einführung in die Analysis behandelt die Integrationstheorie von Funktionen einer Variablen, die mehrdimensionale Differentialrechnung und die Theorie der Kurven und Kurvenintegrale. Der im ersten Band begonnene moderne und klare Aufbau wird konsequent fortgesetzt. Dadurch wird ein tragfähiges Fundament geschaffen, das es erlaubt, interessante Anwenddungen zu behandeln, die zum Teil weit über den in der üblichen Lehrbuchliteratur behandelten Stoff hinausgehen.