An Introduction to Stochastic Dynamics

Author: Jinqiao Duan

Publisher: Cambridge University Press

ISBN: 1107075394

Category: Mathematics

Page: 307

View: 1150

An accessible introduction for applied mathematicians to concepts and techniques for describing, quantifying, and understanding dynamics under uncertainty.

An Introduction to Stochastic Processes in Physics

Author: Don S. Lemons,Paul Langevin

Publisher: JHU Press

ISBN: 9780801868672

Category: Mathematics

Page: 110

View: 682

"Students will love this book. It tells them without fuss how to do simple and useful numerical calculations, with just enough background to understand what they are doing... a refreshingly brief and unconvoluted work." -- American Journal of Physics

Chaos and Chance

An Introduction to Stochastic Apects of Dynamics

Author: Arno Berger

Publisher: Walter de Gruyter

ISBN: 9783110169911

Category: Mathematics

Page: 245

View: 3609

With emphasis on stochastic aspects of deterministic systems this short book introduces the reader to the basic facts and some special topics of applied ergodic theory. It adresses advanced undergraduate and graduate students from various disciplines, i.e. mathematicians, physicists, electrical and mechanical engineers. Based upon a sound (but non-technical) mathematical introduction, a number of typical examples from applications (mostly from mechanics) are thoroughly discussed. By studying both probabilistic and deterministic features of dynamical systems the reader will develop what might be considered a unified view on chaos and chance as two sides of the same thing.

Introduction to Stochastic Dynamic Programming

Author: Sheldon M. Ross

Publisher: Academic Press

ISBN: 1483269094

Category: Mathematics

Page: 178

View: 1593

Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist—providing counterexamples where appropriate—and then presents methods for obtaining such policies when they do. In addition, general areas of application are presented. The final two chapters are concerned with more specialized models. These include stochastic scheduling models and a type of process known as a multiproject bandit. The mathematical prerequisites for this text are relatively few. No prior knowledge of dynamic programming is assumed and only a moderate familiarity with probability— including the use of conditional expectation—is necessary.

An Introduction to Continuous-Time Stochastic Processes

Theory, Models, and Applications to Finance, Biology, and Medicine

Author: Vincenzo Capasso,David Bakstein

Publisher: Birkhäuser

ISBN: 1493927574

Category: Mathematics

Page: 482

View: 6227

This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: Markov processes Stochastic differential equations Arbitrage-free markets and financial derivatives Insurance risk Population dynamics, and epidemics Agent-based models New to the Third Edition: Infinitely divisible distributions Random measures Levy processes Fractional Brownian motion Ergodic theory Karhunen-Loeve expansion Additional applications Additional exercises Smoluchowski approximation of Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Edition will be of interest to a broad audience of students, pure and applied mathematicians, and researchers and practitioners in mathematical finance, biomathematics, biotechnology, and engineering. Suitable as a textbook for graduate or undergraduate courses, as well as European Masters courses (according to the two-year-long second cycle of the “Bologna Scheme”), the work may also be used for self-study or as a reference. Prerequisites include knowledge of calculus and some analysis; exposure to probability would be helpful but not required since the necessary fundamentals of measure and integration are provided. From reviews of previous editions: "The book is ... an account of fundamental concepts as they appear in relevant modern applications and literature. ... The book addresses three main groups: first, mathematicians working in a different field; second, other scientists and professionals from a business or academic background; third, graduate or advanced undergraduate students of a quantitative subject related to stochastic theory and/or applications." -Zentralblatt MATH

An Introduction to Quantum Stochastic Calculus

Author: K.R. Parthasarathy

Publisher: Springer Science & Business Media

ISBN: 3034805667

Category: Mathematics

Page: 290

View: 5156

An Introduction to Quantum Stochastic Calculus aims to deepen our understanding of the dynamics of systems subject to the laws of chance both from the classical and the quantum points of view and stimulate further research in their unification. This is probably the first systematic attempt to weave classical probability theory into the quantum framework and provides a wealth of interesting features: The origin of Ito’s correction formulae for Brownian motion and the Poisson process can be traced to commutation relations or, equivalently, the uncertainty principle. Quantum stochastic integration enables the possibility of seeing new relationships between fermion and boson fields. Many quantum dynamical semigroups as well as classical Markov semigroups are realised through unitary operator evolutions. The text is almost self-contained and requires only an elementary knowledge of operator theory and probability theory at the graduate level. - - - This is an excellent volume which will be a valuable companion both to those who are already active in the field and those who are new to it. Furthermore there are a large number of stimulating exercises scattered through the text which will be invaluable to students. (Mathematical Reviews) This monograph gives a systematic and self-contained introduction to the Fock space quantum stochastic calculus in its basic form (...) by making emphasis on the mathematical aspects of quantum formalism and its connections with classical probability and by extensive presentation of carefully selected functional analytic material. This makes the book very convenient for a reader with the probability-theoretic orientation, wishing to make acquaintance with wonders of the noncommutative probability, and, more specifcally, for a mathematics student studying this field. (Zentralblatt MATH) Elegantly written, with obvious appreciation for fine points of higher mathematics (...) most notable is [the] author's effort to weave classical probability theory into [a] quantum framework. (The American Mathematical Monthly)

An Introduction to Stochastic Processes with Applications to Biology, Second Edition

Author: Linda J. S. Allen

Publisher: CRC Press

ISBN: 143989468X

Category: Mathematics

Page: 496

View: 7558

An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes. New to the Second Edition A new chapter on stochastic differential equations that extends the basic theory to multivariate processes, including multivariate forward and backward Kolmogorov differential equations and the multivariate Itô’s formula The inclusion of examples and exercises from cellular and molecular biology Double the number of exercises and MATLAB® programs at the end of each chapter Answers and hints to selected exercises in the appendix Additional references from the literature This edition continues to provide an excellent introduction to the fundamental theory of stochastic processes, along with a wide range of applications from the biological sciences. To better visualize the dynamics of stochastic processes, MATLAB programs are provided in the chapter appendices.

Stochastic Dynamics, Filtering and Optimization

Author: Debasish Roy,G. Visweswara Rao

Publisher: Cambridge University Press

ISBN: 1107182646

Category: Technology & Engineering

Page: 700

View: 3217

Targeted at graduate students, researchers and practitioners in the field of science and engineering, this book gives a self-contained introduction to a measure-theoretic framework in laying out the definitions and basic concepts of random variables and stochastic diffusion processes. It then continues to weave into a framework of several practical tools and applications involving stochastic dynamical systems. These include tools for the numerical integration of such dynamical systems, nonlinear stochastic filtering and generalized Bayesian update theories for solving inverse problems and a new stochastic search technique for treating a broad class of non-convex optimization problems. MATLAB codes for all the applications are uploaded on the companion website.

Stochastic Dynamics of Complex Systems

From Glasses to Evolution

Author: Paolo Sibani,Henrik Jeldtoft Jensen

Publisher: World Scientific Publishing Company

ISBN: 1848169957

Category: Mathematics

Page: 300

View: 6980

Dynamical evolution over long time scales is a prominent feature of all the systems we intuitively think of as complex — for example, ecosystems, the brain or the economy. In physics, the term ageing is used for this type of slow change, occurring over time scales much longer than the patience, or indeed the lifetime, of the observer. The main focus of this book is on the stochastic processes which cause ageing, and the surprising fact that the ageing dynamics of systems which are very different at the microscopic level can be treated in similar ways. The first part of this book provides the necessary mathematical and computational tools and the second part describes the intuition needed to deal with these systems. Some of the first few chapters have been covered in several other books, but the emphasis and selection of the topics reflect both the authors' interests and the overall theme of the book. The second part contains an introduction to the scientific literature and deals in some detail with the description of complex phenomena of a physical and biological nature, for example, disordered magnetic materials, superconductors and glasses, models of co-evolution in ecosystems and even of ant behaviour. These heterogeneous topics are all dealt with in detail using similar analytical techniques. This book emphasizes the unity of complex dynamics and provides the tools needed to treat a large number of complex systems of current interest. The ideas and the approach to complex dynamics it presents have not appeared in book form until now.

Stochastic Differential Equations

An Introduction with Applications in Population Dynamics Modeling

Author: Michael J. Panik

Publisher: John Wiley & Sons

ISBN: 1119377382

Category: Mathematics

Page: 304

View: 7740

A beginner’s guide to stochastic growth modeling The chief advantage of stochastic growth models over deterministic models is that they combine both deterministic and stochastic elements of dynamic behaviors, such as weather, natural disasters, market fluctuations, and epidemics. This makes stochastic modeling a powerful tool in the hands of practitioners in fields for which population growth is a critical determinant of outcomes. However, the background requirements for studying SDEs can be daunting for those who lack the rigorous course of study received by math majors. Designed to be accessible to readers who have had only a few courses in calculus and statistics, this book offers a comprehensive review of the mathematical essentials needed to understand and apply stochastic growth models. In addition, the book describes deterministic and stochastic applications of population growth models including logistic, generalized logistic, Gompertz, negative exponential, and linear. Ideal for students and professionals in an array of fields including economics, population studies, environmental sciences, epidemiology, engineering, finance, and the biological sciences, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: • Provides precise definitions of many important terms and concepts and provides many solved example problems • Highlights the interpretation of results and does not rely on a theorem-proof approach • Features comprehensive chapters addressing any background deficiencies readers may have and offers a comprehensive review for those who need a mathematics refresher • Emphasizes solution techniques for SDEs and their practical application to the development of stochastic population models An indispensable resource for students and practitioners with limited exposure to mathematics and statistics, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling is an excellent fit for advanced undergraduates and beginning graduate students, as well as practitioners who need a gentle introduction to SDEs. Michael J. Panik, PhD, is Professor in the Department of Economics, Barney School of Business and Public Administration at the University of Hartford in Connecticut. He received his PhD in Economics from Boston College and is a member of the American Mathematical Society, The American Statistical Association, and The Econometric Society.

An Introduction to the Modeling of Neural Networks

Author: Pierre Peretto

Publisher: Cambridge University Press

ISBN: 9780521424875

Category: Computers

Page: 473

View: 7216

This book is a beginning graduate-level introduction to neural networks which is divided into four parts.

Lectures on Dynamics of Stochastic Systems

Author: Valery I. Klyatskin

Publisher: Elsevier

ISBN: 9780123849670

Category: Science

Page: 410

View: 5523

Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. Models naturally render to statistical description, where random processes and fields express the input parameters and solutions. The fundamental problem of stochastic dynamics is to identify the essential characteristics of the system (its state and evolution), and relate those to the input parameters of the system and initial data. This book is a revised and more comprehensive version of Dynamics of Stochastic Systems. Part I provides an introduction to the topic. Part II is devoted to the general theory of statistical analysis of dynamic systems with fluctuating parameters described by differential and integral equations. Part III deals with the analysis of specific physical problems associated with coherent phenomena. A comprehensive update of Dynamics of Stochastic Systems Develops mathematical tools of stochastic analysis and applies them to a wide range of physical models of particles, fluids and waves Includes problems for the reader to solve

Stochastic Dynamics of Marine Structures

Author: Arvid Naess,Torgeir Moan

Publisher: Cambridge University Press

ISBN: 0521881552

Category: Mathematics

Page: 422

View: 8550

For students and professionals, this covers theory and methods for stochastic modelling and analysis of marine structures under environmental loads.

An Introduction to Benford's Law

Author: Arno Berger,Theodore P. Hill

Publisher: Princeton University Press

ISBN: 1400866588

Category: Mathematics

Page: 256

View: 7599

This book provides the first comprehensive treatment of Benford's law, the surprising logarithmic distribution of significant digits discovered in the late nineteenth century. Establishing the mathematical and statistical principles that underpin this intriguing phenomenon, the text combines up-to-date theoretical results with overviews of the law’s colorful history, rapidly growing body of empirical evidence, and wide range of applications. An Introduction to Benford’s Law begins with basic facts about significant digits, Benford functions, sequences, and random variables, including tools from the theory of uniform distribution. After introducing the scale-, base-, and sum-invariance characterizations of the law, the book develops the significant-digit properties of both deterministic and stochastic processes, such as iterations of functions, powers of matrices, differential equations, and products, powers, and mixtures of random variables. Two concluding chapters survey the finitely additive theory and the flourishing applications of Benford’s law. Carefully selected diagrams, tables, and close to 150 examples illuminate the main concepts throughout. The text includes many open problems, in addition to dozens of new basic theorems and all the main references. A distinguishing feature is the emphasis on the surprising ubiquity and robustness of the significant-digit law. This text can serve as both a primary reference and a basis for seminars and courses.

Stochastic Numerical Methods

An Introduction for Students and Scientists

Author: Ra?l Toral,Pere Colet

Publisher: John Wiley & Sons

ISBN: 3527683127

Category: Science

Page: 416

View: 1317

Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability Concepts Monte Carlo Integration Generation of Uniform and Non-uniform Random Numbers: Non-correlated Values Dynamical Methods Applications to Statistical Mechanics Introduction to Stochastic Processes Numerical Simulation of Ordinary and Partial Stochastic Differential Equations Introduction to Master Equations Numerical Simulations of Master Equations Hybrid Monte Carlo Generation of n-Dimensional Correlated Gaussian Variables Collective Algorithms for Spin Systems Histogram Extrapolation Multicanonical Simulations

An Introduction to the Mathematics of Financial Derivatives

Author: Ali Hirsa,Salih N. Neftci

Publisher: Academic Press

ISBN: 0123846838

Category: Mathematics

Page: 454

View: 7105

An Introduction to the Mathematics of Financial Derivatives is a popular, intuitive text that eases the transition between basic summaries of financial engineering to more advanced treatments using stochastic calculus. Requiring only a basic knowledge of calculus and probability, it takes readers on a tour of advanced financial engineering. This classic title has been revised by Ali Hirsa, who accentuates its well-known strengths while introducing new subjects, updating others, and bringing new continuity to the whole. Popular with readers because it emphasizes intuition and common sense, An Introduction to the Mathematics of Financial Derivatives remains the only "introductory" text that can appeal to people outside the mathematics and physics communities as it explains the hows and whys of practical finance problems. Facilitates readers' understanding of underlying mathematical and theoretical models by presenting a mixture of theory and applications with hands-on learning Presented intuitively, breaking up complex mathematics concepts into easily understood notions Encourages use of discrete chapters as complementary readings on different topics, offering flexibility in learning and teaching

Stochastic Dynamics for Systems Biology

Author: Christian Mazza,Michel Benaim

Publisher: CRC Press

ISBN: 1466514949

Category: Mathematics

Page: 274

View: 9597

Stochastic Dynamics for Systems Biology is one of the first books to provide a systematic study of the many stochastic models used in systems biology. The book shows how the mathematical models are used as technical tools for simulating biological processes and how the models lead to conceptual insights on the functioning of the cellular processing system. Most of the text should be accessible to scientists with basic knowledge in calculus and probability theory. The authors illustrate the relevant Markov chain theory using realistic models from systems biology, including signaling and metabolic pathways, phosphorylation processes, genetic switches, and transcription. A central part of the book presents an original and up-to-date treatment of cooperativity. The book defines classical indexes, such as the Hill coefficient, using notions from statistical mechanics. It explains why binding curves often have S-shapes and why cooperative behaviors can lead to ultrasensitive genetic switches. These notions are then used to model transcription rates. Examples cover the phage lambda genetic switch and eukaryotic gene expression. The book then presents a short course on dynamical systems and describes stochastic aspects of linear noise approximation. This mathematical framework enables the simplification of complex stochastic dynamics using Gaussian processes and nonlinear ODEs. Simple examples illustrate the technique in noise propagation in gene networks and the effects of network structures on multistability and gene expression noise levels. The last chapter provides up-to-date results on stochastic and deterministic mass action kinetics with applications to enzymatic biochemical reactions and metabolic pathways.

Markov Processes

An Introduction for Physical Scientists

Author: Daniel T. Gillespie

Publisher: Gulf Professional Publishing

ISBN: 9780122839559

Category: Mathematics

Page: 565

View: 9666

Markov process theory is basically an extension of ordinary calculus to accommodate functions whos time evolutions are not entirely deterministic. It is a subject that is becoming increasingly important for many fields of science. This book develops the single-variable theory of both continuous and jump Markov processes in a way that should appeal especially to physicists and chemists at the senior and graduate level. A self-contained, prgamatic exposition of the needed elements of random variable theory Logically integrated derviations of the Chapman-Kolmogorov equation, the Kramers-Moyal equations, the Fokker-Planck equations, the Langevin equation, the master equations, and the moment equations Detailed exposition of Monte Carlo simulation methods, with plots of many numerical examples Clear treatments of first passages, first exits, and stable state fluctuations and transitions Carefully drawn applications to Brownian motion, molecular diffusion, and chemical kinetics

Basics of Applied Stochastic Processes

Author: Richard Serfozo

Publisher: Springer Science & Business Media

ISBN: 3540893326

Category: Mathematics

Page: 443

View: 9185

Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

Stochastic Calculus

Applications in Science and Engineering

Author: Mircea Grigoriu

Publisher: Springer Science & Business Media

ISBN: 0817682287

Category: Mathematics

Page: 775

View: 7936

Algebraic, differential, and integral equations are used in the applied sciences, en gineering, economics, and the social sciences to characterize the current state of a physical, economic, or social system and forecast its evolution in time. Generally, the coefficients of and/or the input to these equations are not precisely known be cause of insufficient information, limited understanding of some underlying phe nomena, and inherent randonmess. For example, the orientation of the atomic lattice in the grains of a polycrystal varies randomly from grain to grain, the spa tial distribution of a phase of a composite material is not known precisely for a particular specimen, bone properties needed to develop reliable artificial joints vary significantly with individual and age, forces acting on a plane from takeoff to landing depend in a complex manner on the environmental conditions and flight pattern, and stock prices and their evolution in time depend on a large number of factors that cannot be described by deterministic models. Problems that can be defined by algebraic, differential, and integral equations with random coefficients and/or input are referred to as stochastic problems. The main objective of this book is the solution of stochastic problems, that is, the determination of the probability law, moments, and/or other probabilistic properties of the state of a physical, economic, or social system. It is assumed that the operators and inputs defining a stochastic problem are specified.