An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1441974008

Category: Mathematics

Page: 410

View: 1982

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Introduction to Smooth Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

ISBN: 0387217525

Category: Mathematics

Page: 631

View: 1640

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

Introduction to Topological Manifolds

Author: John Lee

Publisher: Springer Science & Business Media

ISBN: 1441979409

Category: Mathematics

Page: 433

View: 706

This book is an introduction to manifolds at the beginning graduate level, and accessible to any student who has completed a solid undergraduate degree in mathematics. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.

Riemannian Manifolds

An Introduction to Curvature

Author: John M. Lee

Publisher: Springer Science & Business Media

ISBN: 0387227261

Category: Mathematics

Page: 226

View: 3079

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

An Introduction to Differential Manifolds

Author: Jacques Lafontaine

Publisher: Springer

ISBN: 3319207350

Category: Mathematics

Page: 395

View: 8436

This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory. The original French text Introduction aux variétés différentielles has been a best-seller in its category in France for many years. Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs.

An Introduction to Differential Manifolds

Author: Dennis Barden,Charles Benedict Thomas

Publisher: N.A

ISBN: 9781860943553

Category: Mathematics

Page: 218

View: 1235

This invaluable book, based on the many years of teaching experience of both authors, introduces the reader to the basic ideas in differential topology. Among the topics covered are smooth manifolds and maps, the structure of the tangent bundle and its associates, the calculation of real cohomology groups using differential forms (de Rham theory), and applications such as the Poincare-Hopf theorem relating the Euler number of a manifold and the index of a vector field. Each chapter contains exercises of varying difficulty for which solutions are provided. Special features include examples drawn from geometric manifolds in dimension 3 and Brieskom varieties in dimensions 5 and 7, as well as detailed calculations for the cohomology groups of spheres and tori. Readership: Upper level undergraduates, beginning graduate students, and lecturers in geometry and topology.

Introduction to Differentiable Manifolds

Author: Louis Auslander,Robert E. MacKenzie

Publisher: Courier Corporation

ISBN: 048615808X

Category: Mathematics

Page: 224

View: 7960

This text presents basic concepts in the modern approach to differential geometry. Topics include Euclidean spaces, submanifolds, and abstract manifolds; fundamental concepts of Lie theory; fiber bundles; and multilinear algebra. 1963 edition.

An Introduction to Multivariable Analysis from Vector to Manifold

Author: Piotr Mikusinski,Michael D. Taylor

Publisher: Springer Science & Business Media

ISBN: 1461200733

Category: Mathematics

Page: 295

View: 3850

Multivariable analysis is of interest to pure and applied mathematicians, physicists, electrical, mechanical and systems engineers, mathematical economists, biologists, and statisticians. This book takes the student and researcher on a journey through the core topics of the subject. Systematic exposition, with numerous examples and exercises from the computational to the theoretical, makes difficult ideas as concrete as possible. Good bibliography and index.

Outer Circles

An Introduction to Hyperbolic 3-Manifolds

Author: A. Marden

Publisher: Cambridge University Press

ISBN: 1139463764

Category: Mathematics

Page: N.A

View: 5842

We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study.

Differential Forms in Algebraic Topology

Author: Raoul Bott,Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1475739516

Category: Mathematics

Page: 338

View: 8082

Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.

An Introduction to Differentiable Manifolds and Riemannian Geometry

Author: William Munger Boothby

Publisher: Gulf Professional Publishing

ISBN: 9780121160517

Category: Mathematics

Page: 419

View: 2706

The second edition of this text has sold over 6,000 copies since publication in 1986 and this revision will make it even more useful. This is the only book available that is approachable by "beginners" in this subject. It has become an essential introduction to the subject for mathematics students, engineers, physicists, and economists who need to learn how to apply these vital methods. It is also the only book that thoroughly reviews certain areas of advanced calculus that are necessary to understand the subject. Line and surface integrals Divergence and curl of vector fields

Foundations of Differentiable Manifolds and Lie Groups

Author: Frank W. Warner

Publisher: Springer Science & Business Media

ISBN: 1475717997

Category: Mathematics

Page: 276

View: 6512

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

An Introduction to the Analysis of Paths on a Riemannian Manifold

Author: Daniel W. Stroock

Publisher: American Mathematical Soc.

ISBN: 0821838393

Category: Mathematics

Page: 269

View: 3539

This book aims to bridge the gap between probability and differential geometry. It gives two constructions of Brownian motion on a Riemannian manifold: an extrinsic one where the manifold is realized as an embedded submanifold of Euclidean space and an intrinsic one based on the ``rolling'' map. It is then shown how geometric quantities (such as curvature) are reflected by the behavior of Brownian paths and how that behavior can be used to extract information about geometric quantities. Readers should have a strong background in analysis with basic knowledge in stochastic calculus and differential geometry. Professor Stroock is a highly-respected expert in probability and analysis. The clarity and style of his exposition further enhance the quality of this volume. Readers will find an inviting introduction to the study of paths and Brownian motion on Riemannian manifolds.

Analysis and Algebra on Differentiable Manifolds

A Workbook for Students and Teachers

Author: Pedro M. Gadea,Jaime Muñoz Masqué,Ihor V. Mykytyuk

Publisher: Springer Science & Business Media

ISBN: 9400759525

Category: Mathematics

Page: 618

View: 6069

This is the second edition of this best selling problem book for students, now containing over 400 completely solved exercises on differentiable manifolds, Lie theory, fibre bundles and Riemannian manifolds. The exercises go from elementary computations to rather sophisticated tools. Many of the definitions and theorems used throughout are explained in the first section of each chapter where they appear. A 56-page collection of formulae is included which can be useful as an aide-mémoire, even for teachers and researchers on those topics. In this 2nd edition: • 76 new problems • a section devoted to a generalization of Gauss’ Lemma • a short novel section dealing with some properties of the energy of Hopf vector fields • an expanded collection of formulae and tables • an extended bibliography Audience This book will be useful to advanced undergraduate and graduate students of mathematics, theoretical physics and some branches of engineering with a rudimentary knowledge of linear and multilinear algebra.

An Introduction to Riemannian Geometry

With Applications to Mechanics and Relativity

Author: Leonor Godinho,José Natário

Publisher: Springer

ISBN: 3319086669

Category: Mathematics

Page: 467

View: 6971

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Calculus On Manifolds

A Modern Approach To Classical Theorems Of Advanced Calculus

Author: Michael Spivak

Publisher: CRC Press

ISBN: 0429970455

Category: Mathematics

Page: 162

View: 3623

This little book is especially concerned with those portions of ?advanced calculus? in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level. The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.

Differential Manifolds

Author: Antoni A. Kosinski

Publisher: Courier Corporation

ISBN: 048631815X

Category: Mathematics

Page: 288

View: 4372

Introductory text for advanced undergraduates and graduate students presents systematic study of the topological structure of smooth manifolds, starting with elements of theory and concluding with method of surgery. 1993 edition.

Manifolds and Differential Geometry

Author: Jeffrey Marc Lee

Publisher: American Mathematical Soc.

ISBN: 0821848151

Category: Mathematics

Page: 671

View: 6007

Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hyper-surfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.