Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 496

View: 975

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Using Algebraic Geometry

Author: David A. Cox

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 503

View: 397

An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.

Commutative Algebra

With a View Toward Algebraic Geometry

Author: David Eisenbud

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 785

View: 236

Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.

An Introduction to Algebraic Geometry and Algebraic Groups

Author: Meinolf Geck

Publisher: Clarendon Press

ISBN:

Category: Mathematics

Page: 320

View: 516

An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles. Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type. The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, a thorough treatment of Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields. Experts in the field will enjoy some of the new approaches to classical results. The text uses algebraic groups as the main examples, including worked out examples, instructive exercises, as well as bibliographical and historical remarks.

Algebraic Geometry

A First Course

Author: Joe Harris

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 330

View: 488

"This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." --MATHEMATICAL REVIEWS

Algebraic Geometry

A Concise Dictionary

Author: Elena Rubei

Publisher: Walter de Gruyter GmbH & Co KG

ISBN:

Category: Mathematics

Page: 239

View: 969

Algebraic geometry is one of the most classic subjects of university research in mathematics. It has a very complicated language that makes life very difficult for beginners. This book is a little dictionary of algebraic geometry: for every of the most common words in algebraic geometry, it contains its definition, several references and the statements of the main theorems about that term (without their proofs). Also some terms of other subjects, close to algebraic geometry, have been included. It was born to help beginners that know some basic facts of algebraic geometry, but not every basic fact, to follow seminars and to read papers, by providing them with basic definitions and statements. The form of a dictionary makes it very easy and quick to consult.

Combinatorial Algebraic Geometry

Selected Papers From the 2016 Apprenticeship Program

Author: Gregory G. Smith

Publisher: Springer

ISBN:

Category: Mathematics

Page: 390

View: 386

This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.

An Invitation to Algebraic Geometry

Author: Karen Smith

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 164

View: 979

This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.

The Geometry of Syzygies

A Second Course in Algebraic Geometry and Commutative Algebra

Author: David Eisenbud

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 246

View: 952

First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.

Elementary Algebraic Geometry

Author: K. Kendig

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 309

View: 903

This book was written to make learning introductory algebraic geometry as easy as possible. It is designed for the general first- and second-year graduate student, as well as for the nonspecialist; the only prerequisites are a one-year course in algebra and a little complex analysis. There are many examples and pictures in the book. One's sense of intuition is largely built up from exposure to concrete examples, and intuition in algebraic geometry is no exception. I have also tried to avoid too much generalization. If one under stands the core of an idea in a concrete setting, later generalizations become much more meaningful. There are exercises at the end of most sections so that the reader can test his understanding of the material. Some are routine, others are more challenging. Occasionally, easily established results used in the text have been made into exercises. And from time to time, proofs of topics not covered in the text are sketched and the reader is asked to fill in the details. Chapter I is of an introductory nature. Some of the geometry of a few specific algebraic curves is worked out, using a tactical approach that might naturally be tried by one not familiar with the general methods intro duced later in the book. Further examples in this chapter suggest other basic properties of curves. In Chapter II, we look at curves more rigorously and carefully.