Aircraft Propulsion

Author: Saeed Farokhi

Publisher: John Wiley & Sons


Category: Technology & Engineering

Page: 786

View: 7912

Aircraft Propulsion is an engineering textbook written for students in aerospace and mechanical engineering. The book covers aircraft gas turbine engine and rocket propulsion from its basic principles to more advanced treatments in engine components. Propulsion system integration with aircraft plays an important role in understanding propulsion and is thus addressed in the book. Extensive review material and derivations are intended to help students navigate through the subject with more ease. Over 100 examples and 300 problems are designed to practice the principles learned in jet propulsion and compliment learning through applications. In every engine component, issues related to manufacturing, material properties, temperature limitations and cooling are included to give students an appreciation for the broader scope of propulsion engineering than just aero-thermodynamics. Component matching and off-design analysis is detailed in a separate chapter to provide the physical and performance linkage between the components and their impact on aircraft engines. Principles of chemical rocket propulsion are presented in the context of single-stage to orbit propulsion needs of a rocket-based combined cycle vehicle. The broad treatment of the gas turbine engine cycles and components makes the book suitable as a reference for propulsion and turbomachinery engineers, gas turbine industry and professional development courses.



Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120352645

Category: Transportation

Page: 120

View: 4903

With the changing technological environment, the aircraft industry has experienced an exponential growth. Owing to the escalating use of aircrafts nowadays, it is required for the professionals and learners of the field to have conceptual understanding of propulsion systems and ability to apply these concepts in a way to develop aircrafts that make them fly further, higher and faster. Designed as a text for the undergraduate students of Aerospace and Aeronautical Engineering, the book covers all the basic concepts relating to propulsion in a clear and concise manner. Primary emphasis is laid on making the understanding of theoretical concepts as simple as possible by using lucid language and avoiding much complicated mathematical derivations. Thus, the book presents the concepts of propulsion in a style that even the beginners can understand them easily. The text commences with the basic pre-requisites for propulsion system followed by the fundamental thermodynamic aspects, laws and theories. Later on, it explains the gas turbine engine followed by rocket engine and ramjet engine. Finally, the book discusses the introductory part of an advanced topic, i.e., pulse detonation engine.

Commercial Aircraft Propulsion and Energy Systems Research

Reducing Global Carbon Emissions

Author: National Academies of Sciences, Engineering, and Medicine,Division on Engineering and Physical Sciences,Aeronautics and Space Engineering Board,Committee on Propulsion and Energy Systems to Reduce Commercial Aviation Carbon Emissions

Publisher: National Academies Press

ISBN: 0309440998

Category: Technology & Engineering

Page: 122

View: 5320

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.

Aircraft Propulsion and Gas Turbine Engines

Author: Ahmed F. El-Sayed

Publisher: CRC Press

ISBN: 1420008773

Category: Technology & Engineering

Page: 912

View: 1147

The escalating use of aircraft in the 21st century demands a thorough understanding of engine propulsion concepts, including the performance of aero engines. Among other critical activities,gas turbines play an extensive role in electric power generation, and marine propulsion for naval vessels and cargo ships. In the most exhaustive volume to date, this text examines the foundation of aircraft propulsion: aerodynamics interwoven with thermodynamics, heat transfer, and mechanical design. With a finely focused approach, the author devotes each chapter to a particular engine type, such as ramjet and pulsejet, turbojet, and turbofan. Supported by actual case studies, he illustrates engine performance under various operating conditions. Part I discusses the history, classifications, and performance of air breathing engines. Beginning with Leonardo and continuing on to the emergence of the jet age and beyond, this section chronicles inventions up through the 20th century. It then moves into a detailed discussion of different engine types, including pulsejet, ramjet, single- and multi-spool turbojet, and turbofan in both subsonic and supersonic applications. The author discusses Vertical Take Off and Landing aircraft, and provides a comprehensive examination of hypersonic scramjet and turbo ramjet engines. He also analyzes the different types of industrial gas turbines having single-and multi-spool with intercoolers, regenerators, and reheaters. Part II investigates the design of rotating compressors and turbines, and non-rotating components, intakes, combustion chambers, and nozzles for all modern jet propulsion and gas turbine engine systems, along with their performance. Every chapter concludes with illustrative examples followed by a problems section; for greater clarity, some provide a listing of important mathematical relations.

The Power for Flight

NASA's Contributions to Aircraft Propulsion

Author: Jeremy R. Kinney

Publisher: Government Printing Office

ISBN: 9781626830370

Category: Airplanes

Page: 324

View: 5102

The NACA and aircraft propulsion, 1915-1958 -- NASA gets to work, 1958-1975 -- The shift toward commercial aviation, 1966-1975 -- The quest for propulsive efficiency, 1976-1989 -- Propulsion control enters the computer era, 1976-1998 -- Transiting to a new century, 1990-2008 -- Toward the future

Gas Turbine Aero-Thermodynamics

With Special Reference to Aircraft Propulsion

Author: F. Whittle

Publisher: Elsevier

ISBN: 1483293211

Category: Technology & Engineering

Page: 276

View: 2722

For the first time simplified methods of dealing with gas turbine thermal cycles, and further theoretical innovations, have been embodied into a concise textbook. All the major aspects of the subject are covered in a comprehensive and lucid manner. Examples are included for greater clarity

Aircraft Propulsion

Author: V. Babu

Publisher: CRC Press

ISBN: 9781439812716

Category: Technology & Engineering

Page: 212

View: 334

This book focuses on fundamental concepts in propulsion—particularly gas dynamics, turbomachinery and combustion—and theoretical and practical design aspects of aircraft engines and thermodynamic aspects and analysis. Its pedagogical format enables readers to learn concepts and problem solving and analysis techniques and then use worked examples to understand their application to practical situations in propulsion. Some exercises use thrust calculations based exclusively on military and commercial aircraft engines. The book also introduces advanced concepts on ramjets and scramjets to facilitate advanced studies in propulsion. Written for undergraduate and first-year postgraduate students in mechanical and aerospace engineering, this book is also useful for scientists and engineers working in aerospace propulsion and gas dynamics.

Gas Turbine Theory

Author: H. I. H. Saravanamuttoo

Publisher: Pearson Education

ISBN: 9780132224376

Category: Technology & Engineering

Page: 590

View: 8123

"In recent years the gas turbine, in combination with the steam turbine, has played an ever-increasing role in power generation. Despite the rapid advances in both output and efficiency, the basic theory of the gas turbine has remained unchanged. The layout of this new edition is broadly similar to the original, but greatly expanded and updated, comprising an outline of the basic theory, aerodynamic design of individual components, and the prediction of off-design performance. The addition of a chapter devoted to the mechanical design of gas turbines greatly enhances the scope of the book."--Publisher's website.

Fundamentals of Aircraft and Rocket Propulsion

Author: Ahmed F. El-Sayed

Publisher: Springer

ISBN: 1447167961

Category: Technology & Engineering

Page: 1010

View: 2312

This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in the history and classification of both aircraft and rocket engines, important design features of all the engines detailed, and particular consideration of special aircraft such as unmanned aerial and short/vertical takeoff and landing aircraft. End-of-chapter exercises make this a valuable student resource, and the provision of a downloadable solutions manual will be of further benefit for course instructors.

Theory of Aerospace Propulsion

Author: P. M. Sforza

Publisher: Elsevier

ISBN: 1856179125

Category: Technology & Engineering

Page: 684

View: 9878

Readers of this book will be able to: utilize the fundamental principles of fluid mechanics and thermodynamics to analyze aircraft engines, understand the common gas turbine aircraft propulsion systems and be able to determine the applicability of each, perform system studies of aircraft engine systems for specified flight conditions, perform preliminary aerothermal design of turbomachinery components, and conceive, analyze, and optimize competing preliminary designs for conventional and unconventional missions. Early coverage of cycle analysis provides a systems perspective, and offers context for the chapters on turbomachinery and components Broader coverage than found in most other books - including coverage of propellers, nuclear rockets, and space propulsion - allows analysis and design of more types of propulsion systems In depth, quantitative treatments of the components of jet propulsion engines provides the tools for evaluation and component matching for optimal system performance Worked examples and end of chapter exercises provide practice for analysis, preliminary design, and systems integration