**Author**: Taneja

**Publisher:** I. K. International Pvt Ltd

**ISBN:** 8189866486

**Category:**

**Page:** 908

**View:** 3061

The text has been divided in two volumes: Volume I (Ch. 1-13) & Volume II (Ch. 14-22). In addition to the review material and some basic topics as discussed in the opening chapter, the main text in Volume I covers topics on infinite series, differential and integral calculus, matrices, vector calculus, ordinary differential equations, special functions and Laplace transforms. Volume II covers topics on complex analysis, Fourier analysis, partial differential equations and statistics. The present book has numerous distinguishing features over the already existing books on the same topic. The chapters have been planned to create interest among the readers to study and apply the mathematical tools. The subject has been presented in a very lucid and precise manner with a wide variety of examples and exercises, which would eventually help the reader for hassle free study.

Now with a full-color design, the new Fourth Edition of Zill's Advanced Engineering Mathematics provides an in-depth overview of the many mathematical topics necessary for students planning a career in engineering or the sciences. A key strength of this text is Zill's emphasis on differential equations as mathematical models, discussing the constructs and pitfalls of each. The Fourth Edition is comprehensive, yet flexible, to meet the unique needs of various course offerings ranging from ordinary differential equations to vector calculus. Numerous new projects contributed by esteemed mathematicians have been added. New modern applications and engaging projects makes Zill's classic text a must-have text and resource for Engineering Math students!

Engineers require a solid knowledge of the relationship between engineering applications and underlying mathematical theory. However, most books do not present sufficient theory, or they do not fully explain its importance and relevance in understanding those applications. Advanced Engineering Mathematics with Modeling Applications employs a balanced approach to address this informational void, providing a solid comprehension of mathematical theory that will enhance understanding of applications – and vice versa. With a focus on modeling, this book illustrates why mathematical methods work, when they apply, and what their limitations are. Designed specifically for use in graduate-level courses, this book: Emphasizes mathematical modeling, dimensional analysis, scaling, and their application to macroscale and nanoscale problems Explores eigenvalue problems for discrete and continuous systems and many applications Develops and applies approximate methods, such as Rayleigh-Ritz and finite element methods Presents applications that use contemporary research in areas such as nanotechnology Apply the Same Theory to Vastly Different Physical Problems Presenting mathematical theory at an understandable level, this text explores topics from real and functional analysis, such as vector spaces, inner products, norms, and linear operators, to formulate mathematical models of engineering problems for both discrete and continuous systems. The author presents theorems and proofs, but without the full detail found in mathematical books, so that development of the theory does not obscure its application to engineering problems. He applies principles and theorems of linear algebra to derive solutions, including proofs of theorems when they are instructive. Tying mathematical theory to applications, this book provides engineering students with a strong foundation in mathematical terminology and methods.

Now with a full-color design, the new Fourth Edition of Zill's Advanced Engineering Mathematics provides an in-depth overview of the many mathematical topics necessary for students planning a career in engineering or the sciences. A key strength of this text is Zill's emphasis on differential equations as mathematical models, discussing the constructs and pitfalls of each. The Fourth Edition is comprehensive, yet flexible, to meet the unique needs of various course offerings ranging from ordinary differential equations to vector calculus. New modern applications and projects, coupled with a new resource CD-ROM included with the text makes Zill's classic text a must-have text and resource for Engineering Math students!

Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) that reinforce ideas and provide insight into more advanced problems. Comprehensive coverage of frequently used integrals, functions and fundamental mathematical results Contents selected and organized to suit the needs of students, scientists, and engineers Contains tables of Laplace and Fourier transform pairs New section on numerical approximation New section on the z-transform Easy reference system

Now in its sixth edition, Higher Engineering Mathematics is an established textbook that has helped many thousands of students to gain exam success. John Bird's approach is ideal for students from a wide range of academic backgrounds, and can be worked through at the student's own pace. Mathematical theories are examined in the simplest of terms, supported by practical examples and applications from a wide variety of engineering disciplines, to ensure that the reader can apply theory to practice. This extensive and thorough topic coverage makes this an ideal book for a range of university degree modules, foundation degrees, and HNC/D units. This new edition of Higher Engineering Mathematics has been further extended with topics specifically written to help first year engineering degree students and those following foundation degrees. New material has been added on logarithms and exponential functions, binary, octal and hexadecimal numbers, vectors and methods of adding alternating waveforms. This book caters specifically for the engineering mathematics units of the Higher National Engineering schemes from Edexcel, including the core unit Analytical methods for Engineers, and two optional units: Further Analytical Methods for Engineers and Engineering Mathematics, common to both the electrical/electronic engineering and mechanical engineering pathways. A mapping grid is included showing precisely which topics are required for the learning outcomes of each unit. Higher Engineering Mathematics contains examples, supported by 900 worked problems and 1760 further problems contained within exercises throughout the text. In addition, 19 revision tests, which are available to use as tests or as homework are included at regular intervals.

This work is based on the experience and notes of the authors while teaching mathematics courses to engineering students at the Indian Institute of Technology, New Delhi. It covers syllabi of two core courses in mathematics for engineering students.

Mathematics for Engineering has been carefully designed to provide a maths course for a wide ability range, and does not go beyond the requirements of Advanced GNVQ. It is an ideal text for any pre-degree engineering course where students require revision of the basics and plenty of practice work. Bill Bolton introduces the key concepts through examples set firmly in engineering contexts, which students will find relevant and motivating. The second edition has been carefully matched to the Curriculum 2000 Advanced GNVQ units: Applied Mathematics in Engineering (compulsory unit 5) Further Mathematics for Engineering (Edexcel option unit 13) Further Applied Mathematics for Engineering (AQA / City & Guilds option unit 25) A new introductory section on number and mensuration has been added, as well as a new section on series and some further material on applications of differentiation and definite integration. Bill Bolton is a leading author of college texts in engineering and other technical subjects. As well as being a lecturer for many years, he has also been Head of Research, Development and Monitoring at BTEC and acted as a consultant for the Further Education Unit. A pre-degree text designed for FE students Syllabus match for Advanced GNVQ Curriculum 2000 / BTEC National

Thistextbook expands the standard work on numerical mathematics to include the numerics of partial differential equations. The volume is intended for students of mathematics as well as physicists, chemists and engineers who are confronted with finding efficient solutions for complex application problems.

This second edition continues to emphasise learning by doing and the development of students' ability to use mathematics with understanding to solve engineering problems. Extensive treatment of some advanced engineering topics, particularly as tools for computer-based system modelling, analysis and design. *Follow on text from Modern Engineering Mathematics, 2E - over 20,000 copies sold *Changing student needs catered for by some easier examples and exercises plus new introductory sections on matrix algebra and vector spaces *New chapter on Numerical Solution of Ordinary Differential Equations *Engineering applications covered in specific sections in each chapter *The increasing importance of digital techniques and statistics is recognised throughout

Engineers face mathematical dilemmas every day—be it simple arithmetic or complex differential equations. To bail out engineers in such situations, a thorough understanding of applied mathematical concepts is quintessential. Engineering Mathematics II comes up with this and more—from discussing graph theory to solving improper integrals; from working out linear differential equations to understanding the Laplace transforms, the book is an exhaustive cache of solved numerical examples to enhance learning and problem-solving skills in students. The book, with its simple calculations and derivations, completely meets the requirements of II semester BE/BTech students who aspire to master mathematics. Keeping the curriculum at focus, the authors offer numerous problem sets and model question papers, which serve as a great reference work for course study as well as for getting a real-life experience of competitive exams With this book as guide, students will find tackling complex concepts and problems an easy task. It is a great all-time companion for budding engineers. Key Features 1. Lucid, well-explained concepts with solved examples 2. Numerical problem sets for self-assessment 3. Large number of MCQs and model test papers 4. Past examination papers with answers

Zusammen mit der Abstraktion ist die Mathematik das entscheidende Werkzeug für technologische Innovationen. Das Buch bietet eine Einführung in zahlreiche Anwendungen der Mathematik auf dem Gebiet der Technologie. Meist werden moderne Anwendungen dargestellt, die heute zum Alltag gehören. Die mathematischen Grundlagen für technologische Anwendungen sind dabei relativ elementar, was die Leistungsstärke der mathematischen Modellbildung und der mathematischen Hilfsmittel beweist. Mit zahlreichen originellen Übungen am Ende eines jeden Kapitels.

Written for junior-level undergraduate students that are majoring in math, physics, computer science, and electrical engineering.

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

This book incorporates in one volume the material covered in the mathematics course of undergraduate programmes in engineering and technology. The topics discussed include sequences and series, mean value theorems, evolutes, functions of several variables, solutions of ordinary and partial differential equations, Laplace, Fourier and Z-transform with their applications.