Advanced Calculus

Author: Patrick Fitzpatrick

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 590

View: 882

Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables. Special attention has been paid to the motivation for proofs. Selected topics, such as the Picard Existence Theorem for differential equations, have been included in such a way that selections may be made while preserving a fluid presentation of the essential material. Supplemented with numerous exercises, Advanced Calculus is a perfect book for undergraduate students of analysis.

Advanced calculus

Author: Robert Clarke James

Publisher:

ISBN:

Category: Mathematics

Page: 646

View: 883

Advanced Calculus

A Differential Forms Approach

Author: Harold M. Edwards

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 508

View: 710

In a book written for mathematicians, teachers of mathematics, and highly motivated students, Harold Edwards has taken a bold and unusual approach to the presentation of advanced calculus. He begins with a lucid discussion of differential forms and quickly moves to the fundamental theorems of calculus and Stokes’ theorem. The result is genuine mathematics, both in spirit and content, and an exciting choice for an honors or graduate course or indeed for any mathematician in need of a refreshingly informal and flexible reintroduction to the subject. For all these potential readers, the author has made the approach work in the best tradition of creative mathematics. This affordable softcover reprint of the 1994 edition presents the diverse set of topics from which advanced calculus courses are created in beautiful unifying generalization. The author emphasizes the use of differential forms in linear algebra, implicit differentiation in higher dimensions using the calculus of differential forms, and the method of Lagrange multipliers in a general but easy-to-use formulation. There are copious exercises to help guide the reader in testing understanding. The chapters can be read in almost any order, including beginning with the final chapter that contains some of the more traditional topics of advanced calculus courses. In addition, it is ideal for a course on vector analysis from the differential forms point of view. The professional mathematician will find here a delightful example of mathematical literature; the student fortunate enough to have gone through this book will have a firm grasp of the nature of modern mathematics and a solid framework to continue to more advanced studies. The most important feature...is that it is fun—it is fun to read the exercises, it is fun to read the comments printed in the margins, it is fun simply to pick a random spot in the book and begin reading. This is the way mathematics should be presented, with an excitement and liveliness that show why we are interested in the subject. —The American Mathematical Monthly (First Review) An inviting, unusual, high-level introduction to vector calculus, based solidly on differential forms. Superb exposition: informal but sophisticated, down-to-earth but general, geometrically rigorous, entertaining but serious. Remarkable diverse applications, physical and mathematical. —The American Mathematical Monthly (1994) Based on the Second Edition

A Course in Advanced Calculus

Author: Robert S. Borden

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 416

View: 957

An excellent undergraduate text examines sets and structures, limit and continuity in En, measure and integration, differentiable mappings, sequences and series, applications of improper integrals, more. Problems with tips and solutions for some.

Advanced Calculus

Second Edition

Author: David V. Widder

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 544

View: 565

Classic text offers exceptionally precise coverage of partial differentiation, vectors, differential geometry, Stieltjes integral, infinite series, gamma function, Fourier series, Laplace transform, much more. Includes exercises and selected answers.

Advanced Calculus

Author: Joseph B. Dence

Publisher: Academic Press

ISBN:

Category:

Page: 256

View: 484

Designed for a one-semester advanced calculus course, "Advanced Calculus" explores the theory of calculus and highlights the connections between calculus and real analysis -- providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. Ancillary list: * Companion website, Ebook- http: //www.elsevierdirect.com/product.jsp?isbn=9780123749550 * Student Solutions Manual- To come * Instructors Solutions Manual- To come Appropriate rigor for a one-semester advanced calculus course Presents modern materials and nontraditional ways of stating and proving some resultsIncludes precise historical notes throughout the book outstanding feature is the collection of exercises in each chapterProvides coverage of exponential function, and the development of trigonometric functions from the integral

Advanced Calculus

Author: H.K Nickerson

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 560

View: 790

Starting with an abstract treatment of vector spaces and linear transforms, this introduction presents a corresponding theory of integration and concludes with applications to analytic functions of complex variables. 1959 edition.

Advanced Calculus

A Geometric View

Author: James J. Callahan

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 526

View: 533

With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.

Advanced Calculus

Lectures

Author: Владимир Борисович Живетин

Publisher: Pensoft Publishers

ISBN:

Category: Calculus

Page: 543

View: 895

Advanced Calculus of Several Variables

Author: C. H. Edwards

Publisher: Academic Press

ISBN:

Category: Mathematics

Page: 470

View: 209

Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.