**Author**: Warren J. Hehre

**Publisher:** Wiley-Interscience

**ISBN:** N.A

**Category:** Science

**Page:** 548

**View:** 5591

Describes and discusses the use of theoretical models as an alternative to experiment in making accurate predictions of chemical phenomena. Addresses the formulation of theoretical molecular orbital models starting from quantum mechanics, and compares them to experimental results. Draws on a series of models that have already received widespread application and are available for new applications. A new and powerful research tool for the practicing experimental chemist.

This corrected second edition contains new material which includes solvent effects, the treatment of singlet diradicals, and the fundamentals of computaional chemistry. "Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics" is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hueckel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.

Since its inception in 1945, this serial has provided critical and informative articles written by research specialists that integrate industrial, analytical, and technological aspects of biochemistry, organic chemistry, and instrumentation methodology in the study of carbohydrates. The articles provide a definitive interpretation of the current status and future trends in carbohydrate chemistry and biochemistry. Features contributions from leading authorities and industry experts Informs and updates on all the latest developments in the field

This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling techniques. The book will be of value to chemists in industries involved in the manufacture of organic chemicals such as solvents refrigerants, blood substitutes, etc. It also serves as a reference work for researchers, academics, consultants, and students interested in molecular design.

THIS VOLUME, WHICH IS DESIGNED FOR STAND-ALONE USE IN TEACHING AND RESEARCH, FOCUSES ON QUANTUM CHEMISTRY, AN AREA OF SCIENCE THAT MANY CONSIDER TO BE THE CENTRAL CORE OF COMPUTATIONAL CHEMISTRY. TUTORIALS AND REVIEWS COVER * HOW TO OBTAIN SIMPLE CHEMICAL INSIGHT AND CONCEPTS FROM DENSITY FUNCTIONAL THEORY CALCULATIONS, * HOW TO MODEL PHOTOCHEMICAL REACTIONS AND EXCITED STATES, AND * HOW TO COMPUTE ENTHALPIES OF FORMATION OF MOLECULES. A FOURTH CHAPTER TRACES CANADIAN RESEARCH IN THE EVOLUTION OF COMPUTATIONAL CHEMISTRY. ALSO INCLUDED WITH THIS VOLUME IS A SPECIAL TRIBUTE TO QCPE.FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry proves itself an invaluable resource to the computational chemist. This series has a place in every computational chemist's library."-Journal of the American Chemical Society

This publication is the first to present the quantitative application of quantum chemistry to organometallic reactions. Great progress has been made in recent years in the calculation of transition states of organometallic conversions in both homo and heterogeneous catalysis. This volume, which contains seven contributions by leading scientists, deals with key reactions of homogeneous catalysis including oxidative addition, migratory insertions, 2+2 additions, the Wacker reaction, and epoxidation. The book provides experimental chemists with an up-to-date overview of the state of the art in this field, and will stimulate an adjustment of views previously based on semiempirical calculations. For researchers and advanced graduate students whose work involves organometallics and catalysis.

Free energy calculations represent the most accurate computational method available for predicting enzyme inhibitor binding affinities. Advances in computer power in the 1990s enabled the practical application of these calculations in rationale drug design. This book represents the first comprehensive review of this growing area of research and covers the basic theory underlying the method, numerous state of the art strategies designed to improve throughput and dozen examples wherein free energy calculations were used to design and evaluate potential drug candidates.

These proceedings, containing the texts of the invited lectures, cover all aspects of mass spectrometry including theory, fundamental studies, applications and instrumentation. Emphasis is placed on recent developments. A complete listing of the posters is included.

For each of 150 landmark papers in ab initio molecular electronic structure methods, the author provides a lucid commentary that focuses on methodology, rather than particular chemical problems. 1984 edition.

The two-part, fifth edition of Advanced Organic Chemistry has been substantially revised and reorganized for greater clarity. The material has been updated to reflect advances in the field since the previous edition, especially in computational chemistry. Part A covers fundamental structural topics and basic mechanistic types. It can stand-alone; together, with Part B: Reaction and Synthesis, the two volumes provide a comprehensive foundation for the study in organic chemistry. Companion websites provide digital models for study of structure, reaction and selectivity for students and exercise solutions for instructors.

This book consists of over 300 problems (and their solutions) in structural inorganic chemistry at the senior undergraduate and beginning graduate level. The topics covered comprise Atomic and Molecular Electronic States, Atomic Orbitals, Hybrid Orbitals, Molecular Symmetry, Molecular Geometry and Bonding, Crystal Field Theory, Molecular Orbital Theory, Vibrational Spectroscopy, and Crystal Structure. The central theme running through these topics is symmetry, molecular or crystalline. The problems collected in this volume originate in examination papers and take-home assignments that have been part of the teaching of the book's two senior authors' at The Chinese University of Hong Kong over the past four decades. The authors' courses include Chemical Bonding, Elementary Quantum Chemistry, Advanced Inorganic Chemistry, X-Ray Crystallography, etc. The problems have been tested by generations of students taking these courses.

Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent. The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques. This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.

Determining the structure of molecules is a fundamental skillthat all chemists must learn. Structural Methods in MolecularInorganic Chemistry is designed to help readers interpretexperimental data, understand the material published in modernjournals of inorganic chemistry, and make decisions about whattechniques will be the most useful in solving particular structuralproblems. Following a general introduction to the tools and concepts instructural chemistry, the following topics are covered indetail: • computational chemistry • nuclear magnetic resonance spectroscopy • electron paramagnetic resonance spectroscopy • Mössbauer spectroscopy • rotational spectra and rotational structure • vibrational spectroscopy • electronic characterization techniques • diffraction methods • mass spectrometry The final chapter presents a series of case histories,illustrating how chemists have applied a broad range of structuraltechniques to interpret and understand chemical systems. Throughout the textbook a strong connection is made betweentheoretical topics and the real world of practicing chemists. Eachchapter concludes with problems and discussion questions, and asupporting website contains additional advanced material. Structural Methods in Molecular Inorganic Chemistry is anextensive update and sequel to the successful textbookStructural Methods in Inorganic Chemistry by Ebsworth,Rankin and Cradock. It is essential reading for all advancedstudents of chemistry, and a handy reference source for theprofessional chemist.

It is now possible to study the structure and function of biological systems under extreme pressures and temperatures. This book describes the resulting theory and applications of these pressure and temperature effects, even addressing the theory of the origin and evolution of life.

The book brings together, for the first time, all aspects of reactions of metallic species in the gas phase and gives an up-to-date overview of the field. Reactions covered include those of atomic, other free radical and transient neutral species, as well as ions. Experimental and theoretical work is reviewed and the efforts to establish a closer link between these approaches are discussed. The field is mainly approached from a fundamental point-of-view, but the applied problems which have helped stimulate the interest are pointed out and form the major subject of the final chapters. These emphasize the competition between purely gas-phase and gas-surface reactions.