A Primer on Scientific Programming with Python

Author: Hans Petter Langtangen

Publisher: Springer

ISBN: 3662498871

Category: Computers

Page: 922

View: 9230

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015

A Primer on Scientific Programming with Python

Author: Hans Petter Langtangen

Publisher: Springer

ISBN: 3642549594

Category: Computers

Page: 872

View: 5195

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012

A Primer on Scientific Programming with Python

Author: Hans Petter Langtangen

Publisher: Springer Science & Business Media

ISBN: 3642302939

Category: Computers

Page: 798

View: 8556

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example- and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology, and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background, and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science.

Programming for Computations - Python

A Gentle Introduction to Numerical Simulations with Python

Author: Svein Linge,Hans Petter Langtangen

Publisher: Springer

ISBN: 3319324284

Category: Computers

Page: 232

View: 4511

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Python Scripting for Computational Science

Author: Hans Petter Langtangen

Publisher: Springer Science & Business Media

ISBN: 3662054507

Category: Computers

Page: 732

View: 9468

Scripting with Python makes you productive and increases the reliability of your scientific work. Here, the author teaches you how to develop tailored, flexible, and efficient working environments built from small programs (scripts) written in Python. The focus is on examples and applications of relevance to computational science: gluing existing applications and tools, e.g. for automating simulation, data analysis, and visualization; steering simulations and computational experiments; equipping programs with graphical user interfaces; making computational Web services; creating interactive interfaces with a Maple/Matlab-like syntax to numerical applications in C/C++ or Fortran; and building flexible object-oriented programming interfaces to existing C/C++ or Fortran libraries.

Learning Scientific Programming with Python

Author: Christian Hill

Publisher: Cambridge University Press

ISBN: 1107075416

Category: Computers

Page: 482

View: 7106

Learn to master basic programming tasks from scratch with real-life scientific examples in this complete introduction to Python.

Programming for Computations - MATLAB/Octave

A Gentle Introduction to Numerical Simulations with MATLAB/Octave

Author: Svein Linge,Hans Petter Langtangen

Publisher: Springer

ISBN: 3319324527

Category: Computers

Page: 216

View: 9935

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Python for Scientists

Author: John M. Stewart

Publisher: Cambridge University Press

ISBN: 1316641236

Category: Computers

Page: 273

View: 728

Scientific Python is a significant public domain alternative to expensive proprietary software packages. This book teaches from scratch everything the working scientist needs to know using copious, downloadable, useful and adaptable code snippets. Readers will discover how easy it is to implement and test non-trivial mathematical algorithms and will be guided through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the language's capabilities. The author also shows how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. In this new edition, several chapters have been re-written to reflect the IPython notebook style. With an extended index, an entirely new chapter discussing SymPy and a substantial increase in the number of code snippets, researchers and research students will be able to quickly acquire all the skills needed for using Python effectively.

Numerical Methods in Engineering with Python 3

Author: Jaan Kiusalaas

Publisher: Cambridge University Press

ISBN: 1107033853

Category: Computers

Page: 432

View: 3597

Provides an introduction to numerical methods for students in engineering. It uses Python 3, an easy-to-use, high-level programming language.

Mathematics and Python Programming

Author: J.C. Bautista

Publisher: Lulu.com

ISBN: 1326017969

Category: Technology & Engineering

Page: 268

View: 9898

"We have developed 120 Python programs and more than 110 illustrations in a work that will be useful both to students of science of the first university science courses, as well as high school students and teachers, and to anyone interested in Python programming intending to acquire new tools to expose mathematical concepts in a didactic and modern fashion....The book begins with a detailed introduction to Python, followed by ten chapters of mathematics with its corresponding Python programs, results and graphs."--Cover.

A Primer for Computational Biology

Author: Shawn T. O'Neil

Publisher: N.A

ISBN: 9780870719264

Category: Science

Page: 545

View: 4077

A Primer for Computational Biology aims to provide life scientists and students the skills necessary for research in a data-rich world. The text covers accessing and using remote servers via the command-line, writing programs and pipelines for data analysis, and provides useful vocabulary for interdisciplinary work. The book is broken into three parts: Introduction to Unix/Linux: The command-line is the "natural environment" of scientific computing, and this part covers a wide range of topics, including logging in, working with files and directories, installing programs and writing scripts, and the powerful "pipe" operator for file and data manipulation. Programming in Python: Python is both a premier language for learning and a common choice in scientific software development. This part covers the basic concepts in programming (data types, if-statements and loops, functions) via examples of DNA-sequence analysis. This part also covers more complex subjects in software development such as objects and classes, modules, and APIs. Programming in R: The R language specializes in statistical data analysis, and is also quite useful for visualizing large datasets. This third part covers the basics of R as a programming language (data types, if-statements, functions, loops and when to use them) as well as techniques for large-scale, multi-test analyses. Other topics include S3 classes and data visualization with ggplot2.

Introduction to Python for Engineers and Scientists

Open Source Solutions for Numerical Computation

Author: Sandeep Nagar

Publisher: Apress

ISBN: 1484232046

Category: Computers

Page: 254

View: 8898

Familiarize yourself with the basics of Python for engineering and scientific computations using this concise, practical tutorial that is focused on writing code to learn concepts. Introduction to Python is useful for industry engineers, researchers, and students who are looking for open-source solutions for numerical computation. In this book you will learn by doing, avoiding technical jargon, which makes the concepts easy to learn. First you’ll see how to run basic calculations, absorbing technical complexities incrementally as you progress toward advanced topics. Throughout, the language is kept simple to ensure that readers at all levels can grasp the concepts. What You'll Learn Understand the fundamentals of the Python programming language Apply Python to numerical computational programming projects in engineering and science Discover the Pythonic way of life Apply data types, operators, and arrays Carry out plotting for visualization Work with functions and loops Who This Book Is For Engineers, scientists, researchers, and students who are new to Python. Some prior programming experience would be helpful but not required.

Programming: A Primer

Coding for Beginners

Author: Tom Bell

Publisher: World Scientific Publishing Company

ISBN: 1783267097

Category: Computers

Page: 188

View: 3823

Have you ever wanted to learn how to program but never found quite the right book to get you started? Programming: A Primer gets you going straight away with the fundamentals of what programming is, basic programming with Python and the fundamental aspects of practical web development. In this book, you'll learn about: What programming is and how it can benefit you.Variables and operations as the building blocks of a program.If statements, For loops and Methods in Python.Classes, Objects and Inheritance in Python.Web development using HTML, CSS, JavaScript, PHP and SQL.A basic introduction to some of the most important algorithms in programming.The programming languages and frameworks that are available to developers.The future of technology and opportunities for developers and entrepreneurs.Where you can take programming further to learn and create more amazing applications. Programming: A Primer offers an easy way into coding for anyone with an interest in using technology to solve problems, whether a school or new undergraduate computer science student or a working professional. It gives everyone, regardless of background, the ideal foundations and motivation needed to get to grips with programming. A companion website can be found here: http://www.codingforbeginners.co.uk/.

Learning Object-Oriented Programming

Author: Gastón C. Hillar

Publisher: Packt Publishing Ltd

ISBN: 1785289934

Category: Computers

Page: 280

View: 1778

Learning Object-Oriented Programming is an easy-to-follow guide full of hands-on examples of solutions to common problems with object-oriented code in Python, JavaScript, and C#. It starts by helping you to recognize objects from real-life scenarios and demonstrates that working with them makes it simpler to write code that is easy to understand and reuse. You will learn to protect and hide data with the data encapsulation features of Python, JavaScript, and C#. You will explore how to maximize code reuse by writing code capable of working with objects of different types, and discover the advantage of duck typing in both Python and JavaScript, while you work with interfaces and generics in C#. With a fair understanding of interfaces, multiple inheritance, and composition, you will move on to refactor existing code and to organize your source for easy maintenance and extension. Learning Object-Oriented Programming will help you to make better, stronger, and reusable code.

Mastering Python Scientific Computing

Author: Hemant Kumar Mehta

Publisher: Packt Publishing Ltd

ISBN: 1783288833

Category: Computers

Page: 300

View: 1565

A complete guide for Python programmers to master scientific computing using Python APIs and tools About This Book The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered. Most of the Python APIs and tools used in scientific computing are discussed in detail The concepts are discussed with suitable example programs Who This Book Is For If you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming. What You Will Learn Fundamentals and components of scientific computing Scientific computing data management Performing numerical computing using NumPy and SciPy Concepts and programming for symbolic computing using SymPy Using the plotting library matplotlib for data visualization Data analysis and visualization using Pandas, matplotlib, and IPython Performing parallel and high performance computing Real-life case studies and best practices of scientific computing In Detail In today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing. At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python. The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs. Style and approach This book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.

Neural Data Science

A Primer with MATLAB® and PythonTM

Author: Erik Lee Nylen,Pascal Wallisch

Publisher: Academic Press

ISBN: 012804098X

Category: Science

Page: 368

View: 1230

A Primer with MATLAB® and PythonTM present important information on the emergence of the use of Python, a more general purpose option to MATLAB, the preferred computation language for scientific computing and analysis in neuroscience. This book addresses the snake in the room by providing a beginner’s introduction to the principles of computation and data analysis in neuroscience, using both Python and MATLAB, giving readers the ability to transcend platform tribalism and enable coding versatility. Includes discussions of both MATLAB and Python in parallel Introduces the canonical data analysis cascade, standardizing the data analysis flow Presents tactics that strategically, tactically, and algorithmically help improve the organization of code

Python

Pocket Primer

Author: Oswald Campesato

Publisher: Stylus Publishing, LLC

ISBN: 1937585492

Category: Computers

Page: 200

View: 7720

As part of the new Pocket Primer series, this book provides an overview of the major aspects and the source code to use Python 2. It covers the latest Python developments, built-in functions and custom classes, data visualization, graphics, databases, and more. It includes a companion disc with appendices, source code, and figures. This Pocket Primer is primarily for self-directed learners who want to learn Python 2 and it serves as a starting point for deeper exploration of Python programming. Features: +Includes a companion disc with appendices, source code, and figures +Contains material devoted to Raspberry Pi, Roomba, JSON, and Jython +Includes latest Python 2 developments, built-in functions and custom classes, data visualization, graphics, databases, and more +Provides a solid introduction to Python 2 via complete code samples On the CD-ROM: +Appendices (HTML5 and JavaScript Toolkits, Jython, SPA) +Source code samples +All images from the text (including 4-color) +Solutions to Odd-Numbered Exercises

Numerical Python

A Practical Techniques Approach for Industry

Author: Robert Johansson

Publisher: Apress

ISBN: 1484205537

Category: Computers

Page: 487

View: 959

Numerical Python by Robert Johansson shows you how to leverage the numerical and mathematical modules in Python and its Standard Library as well as popular open source numerical Python packages like NumPy, FiPy, matplotlib and more to numerically compute solutions and mathematically model applications in a number of areas like big data, cloud computing, financial engineering, business management and more. After reading and using this book, you'll get some takeaway case study examples of applications that can be found in areas like business management, big data/cloud computing, financial engineering (i.e., options trading investment alternatives), and even games. Up until very recently, Python was mostly regarded as just a web scripting language. Well, computational scientists and engineers have recently discovered the flexibility and power of Python to do more. Big data analytics and cloud computing programmers are seeing Python's immense use. Financial engineers are also now employing Python in their work. Python seems to be evolving as a language that can even rival C++, Fortran, and Pascal/Delphi for numerical and mathematical computations.

Discovering Computer Science

Interdisciplinary Problems, Principles, and Python Programming

Author: Jessen Havill

Publisher: CRC Press

ISBN: 149878674X

Category: Computers

Page: 750

View: 1608

Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Programming introduces computational problem solving as a vehicle of discovery in a wide variety of disciplines. With a principles-oriented introduction to computational thinking, the text provides a broader and deeper introduction to computer science than typical introductory programming books. Organized around interdisciplinary problem domains, rather than programming language features, each chapter guides students through increasingly sophisticated algorithmic and programming techniques. The author uses a spiral approach to introduce Python language features in increasingly complex contexts as the book progresses. The text places programming in the context of fundamental computer science principles, such as abstraction, efficiency, and algorithmic techniques, and offers overviews of fundamental topics that are traditionally put off until later courses. The book includes thirty well-developed independent projects that encourage students to explore questions across disciplinary boundaries. Each is motivated by a problem that students can investigate by developing algorithms and implementing them as Python programs. The book's accompanying website — http://discoverCS.denison.edu — includes sample code and data files, pointers for further exploration, errata, and links to Python language references. Containing over 600 homework exercises and over 300 integrated reflection questions, this textbook is appropriate for a first computer science course for computer science majors, an introductory scientific computing course or, at a slower pace, any introductory computer science course.

Computational Physics

Problem Solving with Python

Author: Rubin H. Landau,Manuel J. Páez,Cristian C. Bordeianu

Publisher: John Wiley & Sons

ISBN: 3527413154

Category: Science

Page: 644

View: 5284

The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python programming language. Python has become very popular, particularly for physics education and large scientific projects. It is probably the easiest programming language to learn for beginners, yet is also used for mainstream scientific computing, and has packages for excellent graphics and even symbolic manipulations. The text is designed for an upper-level undergraduate or beginning graduate course and provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. As part of the teaching of using computers to solve scientific problems, the reader is encouraged to work through a sample problem stated at the beginning of each chapter or unit, which involves studying the text, writing, debugging and running programs, visualizing the results, and the expressing in words what has been done and what can be concluded. Then there are exercises and problems at the end of each chapter for the reader to work on their own (with model programs given for that purpose). The text could be used for a one-semester course on scientific computing. The relevant topics for that are covered in the first third of the book. The latter two-thirds of the text includes more physics and can be used for a two-semester course in computational physics, covering nonlinear ODEs, Chaotic Scattering, Fourier Analysis, Wavelet Analysis, Nonlinear Maps, Chaotic systems, Fractals and Parallel Computing. The e-book extends the paper version by including many codes, visualizations and applets, as well as links to video lectures. * A table at the beginning of each chapter indicates video lectures, slides, applets and animations. * Applets illustrate the results to be expected for projects in the book, and to help understand some abstract concepts (e.g. Chaotic Scattering) * The eBook's figures, equations, sections, chapters, index, table of contents, code listings, glossary, animations and executable codes (both Applets and Python programs) are linked, much like in a Web document. * Some equations are linked to their xml forms (which can be imported into Maple or Mathematica for manipulation). * The e-book will link to video-based lecture modules, held by principal author Professor Rubin Landau, that cover most every topic in the book.