A Practical Introduction to Computer Vision with OpenCV

Author: Kenneth Dawson-Howe

Publisher: John Wiley & Sons

ISBN: 111884873X

Category: Computers

Page: 240

View: 9931

Explains the theory behind basic computer vision and providesa bridge from the theory to practical implementation using theindustry standard OpenCV libraries Computer Vision is a rapidly expanding area and it is becomingprogressively easier for developers to make use of this field dueto the ready availability of high quality libraries (such as OpenCV2). This text is intended to facilitate the practical use ofcomputer vision with the goal being to bridge the gap between thetheory and the practical implementation of computer vision. Thebook will explain how to use the relevant OpenCV library routinesand will be accompanied by a full working program including thecode snippets from the text. This textbook is a heavilyillustrated, practical introduction to an exciting field, theapplications of which are becoming almost ubiquitous. We arenow surrounded by cameras, for example cameras on computers &tablets/ cameras built into our mobile phones/ camerasin games consoles; cameras imaging difficult modalities (such asultrasound, X-ray, MRI) in hospitals, and surveillance cameras.This book is concerned with helping the next generation of computerdevelopers to make use of all these images in order to developsystems which are more intuitive and interact with us in moreintelligent ways. Explains the theory behind basic computer vision and provides abridge from the theory to practical implementation using theindustry standard OpenCV libraries Offers an introduction to computer vision, with enough theoryto make clear how the various algorithms work but with an emphasison practical programming issues Provides enough material for a one semester course in computervision at senior undergraduate and Masters levels Includes the basics of cameras and images and image processingto remove noise, before moving on to topics such as imagehistogramming; binary imaging; video processing to detect and modelmoving objects; geometric operations & camera models; edgedetection; features detection; recognition in images Contains a large number of vision application problems toprovide students with the opportunity to solve real problems.Images or videos for these problems are provided in the resourcesassociated with this book which include an enhanced eBook

A Practical Introduction to Computer Vision with OpenCV, Enhanced Edition

Author: Kenneth Dawson-Howe

Publisher: John Wiley & Sons

ISBN: 1118848810

Category: Computers

Page: 240

View: 1720

Explains the theory behind basic computer vision and providesa bridge from the theory to practical implementation using theindustry standard OpenCV libraries Computer Vision is a rapidly expanding area and it is becomingprogressively easier for developers to make use of this field dueto the ready availability of high quality libraries (such as OpenCV2). This text is intended to facilitate the practical use ofcomputer vision with the goal being to bridge the gap between thetheory and the practical implementation of computer vision. Thebook will explain how to use the relevant OpenCV library routinesand will be accompanied by a full working program including thecode snippets from the text. This textbook is a heavilyillustrated, practical introduction to an exciting field, theapplications of which are becoming almost ubiquitous. We arenow surrounded by cameras, for example cameras on computers &tablets/ cameras built into our mobile phones/ camerasin games consoles; cameras imaging difficult modalities (such asultrasound, X-ray, MRI) in hospitals, and surveillance cameras.This book is concerned with helping the next generation of computerdevelopers to make use of all these images in order to developsystems which are more intuitive and interact with us in moreintelligent ways. Explains the theory behind basic computer vision and provides abridge from the theory to practical implementation using theindustry standard OpenCV libraries Offers an introduction to computer vision, with enough theoryto make clear how the various algorithms work but with an emphasison practical programming issues Provides enough material for a one semester course in computervision at senior undergraduate and Masters levels Includes the basics of cameras and images and image processingto remove noise, before moving on to topics such as imagehistogramming; binary imaging; video processing to detect and modelmoving objects; geometric operations & camera models; edgedetection; features detection; recognition in images Contains a large number of vision application problems toprovide students with the opportunity to solve real problems.Images or videos for these problems are provided in the resourcesassociated with this book which include an enhanced eBook

Bildverstehen

Author: Axel Pinz

Publisher: Springer-Verlag

ISBN: 3709193583

Category: Computers

Page: 235

View: 2915

Bildverstehen, Bilder und die ihnen zugrundeliegenden Szenen mit den darin vorkommenden Objekten verstehen und beschreiben, das bedeutet aus der Sicht der Informatik: Sehen mit dem Computer - ‘Computer Vision’. Das Buch behandelt neben wichtigen Merkmalen des menschlichen visuellen Systems auch die nötigen Grundlagen aus digitaler Bildverarbeitung und aus künstlicher Intelligenz. Im Zentrum steht die schrittweise Entwicklung eines neuen Systemmodells für Bildverstehen, anhand dessen verschiedene "Abstraktionsebenen" des maschinellen Sehens, wie Segmentation, Gruppierung auf Aufbau einer Szenenbeschreibung besprochen werden. Das Buch bietet außerdem einen Überblick über gegenwärtige Trends in der Forschung sowie eine sehr aktuelle und ausführliche Bibliographie dieses Fachgebietes. Es liegt hiermit erstmalig eine abgeschlossene, systematische Darstellung dieses noch jungen und in dynamischer Entwicklung begriffenen Fachgebietes vor.

Practical Computer Vision

Extract insightful information from images using TensorFlow, Keras, and OpenCV

Author: Abhinav Dadhich

Publisher: Packt Publishing Ltd

ISBN: 1788294769

Category: Computers

Page: 234

View: 2453

A practical guide designed to get you from basics to current state of art in computer vision systems. Key Features Master the different tasks associated with Computer Vision and develop your own Computer Vision applications with ease Leverage the power of Python, Tensorflow, Keras, and OpenCV to perform image processing, object detection, feature detection and more With real-world datasets and fully functional code, this book is your one-stop guide to understanding Computer Vision Book Description In this book, you will find several recently proposed methods in various domains of computer vision. You will start by setting up the proper Python environment to work on practical applications. This includes setting up libraries such as OpenCV, TensorFlow, and Keras using Anaconda. Using these libraries, you'll start to understand the concepts of image transformation and filtering. You will find a detailed explanation of feature detectors such as FAST and ORB; you'll use them to find similar-looking objects. With an introduction to convolutional neural nets, you will learn how to build a deep neural net using Keras and how to use it to classify the Fashion-MNIST dataset. With regard to object detection, you will learn the implementation of a simple face detector as well as the workings of complex deep-learning-based object detectors such as Faster R-CNN and SSD using TensorFlow. You'll get started with semantic segmentation using FCN models and track objects with Deep SORT. Not only this, you will also use Visual SLAM techniques such as ORB-SLAM on a standard dataset. By the end of this book, you will have a firm understanding of the different computer vision techniques and how to apply them in your applications. What you will learn Learn the basics of image manipulation with OpenCV Implement and visualize image filters such as smoothing, dilation, histogram equalization, and more Set up various libraries and platforms, such as OpenCV, Keras, and Tensorflow, in order to start using computer vision, along with appropriate datasets for each chapter, such as MSCOCO, MOT, and Fashion-MNIST Understand image transformation and downsampling with practical implementations. Explore neural networks for computer vision and convolutional neural networks using Keras Understand working on deep-learning-based object detection such as Faster-R-CNN, SSD, and more Explore deep-learning-based object tracking in action Understand Visual SLAM techniques such as ORB-SLAM Who this book is for This book is for machine learning practitioners and deep learning enthusiasts who want to understand and implement various tasks associated with Computer Vision and image processing in the most practical manner possible. Some programming experience would be beneficial while knowing Python would be an added bonus.

Practical OpenCV

Author: Samarth Brahmbhatt

Publisher: Apress

ISBN: 1430260793

Category: Computers

Page: 244

View: 7171

Practical OpenCV is a hands-on project book that shows you how to get the best results from OpenCV, the open-source computer vision library. Computer vision is key to technologies like object recognition, shape detection, and depth estimation. OpenCV is an open-source library with over 2500 algorithms that you can use to do all of these, as well as track moving objects, extract 3D models, and overlay augmented reality. It's used by major companies like Google (in its autonomous car), Intel, and Sony; and it is the backbone of the Robot Operating System’s computer vision capability. In short, if you're working with computer vision at all, you need to know OpenCV. With Practical OpenCV, you'll be able to: Get OpenCV up and running on Windows or Linux. Use OpenCV to control the camera board and run vision algorithms on Raspberry Pi. Understand what goes on behind the scenes in computer vision applications like object detection, image stitching, filtering, stereo vision, and more. Code complex computer vision projects for your class/hobby/robot/job, many of which can execute in real time on off-the-shelf processors. Combine different modules that you develop to create your own interactive computer vision app. What you’ll learn The ins and outs of OpenCV programming on Windows and Linux Transforming and filtering images Detecting corners, edges, lines, and circles in images and video Detecting pre-trained objects in images and video Making panoramas by stitching images together Getting depth information by using stereo cameras Basic machine learning techniques BONUS: Learn how to run OpenCV on Raspberry Pi Who this book is for This book is for programmers and makers with little or no previous exposure to computer vision. Some proficiency with C++ is required. Table of ContentsPart 1: Getting comfortable Chapter 1: Introduction to Computer Vision and OpenCV Chapter 2: Setting up OpenCV on your computer Chapter 3: CV Bling – OpenCV inbuilt demos Chapter 4: Basic operations on images and GUI windows Part 2: Advanced computer vision problems and coding them in OpenCV Chapter 5: Image filtering Chapter 6: Shapes in images Chapter 7: Image segmentation and histograms Chapter 8: Basic machine learning and keypoint-based object detection Chapter 9: Affine and Perspective transformations and their applications to image panoramas Chapter 10: 3D geometry and stereo vision Chapter 11: Embedded computer vision: Running OpenCV programs on the Raspberry Pi

Hands-On Algorithms for Computer Vision

Learn how to use the best and most practical computer vision algorithms using OpenCV

Author: Amin Ahmadi Tazehkandi

Publisher: Packt Publishing Ltd

ISBN: 1789133424

Category: Computers

Page: 290

View: 8609

Create powerful, accurate, and real-time Computer Vision applications using a perfect blend of algorithms and filters. Also learn about object tracking and foreground extractions with a variety of new filters and algorithms. Key Features Filter, transform, and manipulate images using MAT class and OpenCV Framework Explore motion detection and object tracking with filters and algorithms Build object detectors using deep learning and machine learning algorithms Book Description An arena that has been positively impacted by the advancements in processing power and performance is the field of computer vision. It's only natural that over time, more and more algorithms are introduced to perform computer vision tasks more efficiently. Hands-On Algorithms for Computer Vision is a starting point for anyone who is interested in the field of computer vision and wants to explore the most practical algorithms used by professional computer vision developers. The book starts with the basics and builds up over the course of the chapters with hands-on examples for each algorithm. Right from the start, you will learn about the required tools for computer vision development, and how to install and configure them. You'll explore the OpenCV framework and its powerful collection of libraries and functions. Starting from the most simple image modifications, filtering, and transformations, you will gradually build up your knowledge of various algorithms until you are able to perform much more sophisticated tasks, such as real-time object detection using deep learning algorithms. What you will learn Get to grips with machine learning and artificial intelligence algorithms Read, write, and process images and videos Perform mathematical, matrix, and other types of image data operations Create and use histograms from back-projection images Detect motion, extract foregrounds, and track objects Extract key points with a collection of feature detector algorithms Develop cascade classifiers and use them, and train and test classifiers Employ TensorFlow object detection to detect multiple objects Who this book is for Hands-On Algorithms for Computer Vision helps those who want to learn algorithms in Computer Vision to create and customize their applications. This book will also help existing Computer Vision developers customize their applications. A basic understanding of computer vision and programming experience is needed.

Phenomics

Author: John Doonan,Marcos Egea-Cortines

Publisher: Frontiers Media SA

ISBN: 2889456072

Category:

Page: N.A

View: 6669

"Phenomics" is an emerging area of research whose aspiration is the systematic measurement of the physical, physiological and biochemical traits (the phenome) belonging to a given individual or collection of individuals. Non-destructive or minimally invasive techniques allow repeated measurements across time to follow phenotypes as a function of developmental time. These longitudinal traits promise new insights into the ways in which crops respond to their environment including how they are managed. To maximize the benefit, these approaches should ideally be scalable so that large populations in multiple environments can be sampled repeatedly at reasonable cost. Thus, the development and validation of non-contact sensing technologies remains an area of intensive activity that ranges from Remote Sensing of crops within the landscape to high resolution at the subcellular level. Integration of this potentially highly dimensional data and linking it with variation at the genetic level is an ongoing challenge that promises to release the potential of both established and under-exploited crops.

Learn OpenCV 4 by Building Projects

Build real-world computer vision and image processing applications with OpenCV and C++, 2nd Edition

Author: David Millán Escrivá,Vinícius G. Mendonça,Prateek Joshi

Publisher: Packt Publishing Ltd

ISBN: 1789347629

Category: Computers

Page: 310

View: 2209

Explore OpenCV 4 to create visually appealing cross-platform computer vision applications Key Features Understand basic OpenCV 4 concepts and algorithms Grasp advanced OpenCV techniques such as 3D reconstruction, machine learning, and artificial neural networks Work with Tesseract OCR, an open-source library to recognize text in images Book Description OpenCV is one of the best open source libraries available, and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you’re completely new to computer vision, or have a basic understanding of its concepts, Learn OpenCV 4 by Building Projects – Second edition will be your guide to understanding OpenCV concepts and algorithms through real-world examples and projects. You’ll begin with the installation of OpenCV and the basics of image processing. Then, you’ll cover user interfaces and get deeper into image processing. As you progress through the book, you'll learn complex computer vision algorithms and explore machine learning and face detection. The book then guides you in creating optical flow video analysis and background subtraction in complex scenes. In the concluding chapters, you'll also learn about text segmentation and recognition and understand the basics of the new and improved deep learning module. By the end of this book, you'll be familiar with the basics of Open CV, such as matrix operations, filters, and histograms, and you'll have mastered commonly used computer vision techniques to build OpenCV projects from scratch. What you will learn Install OpenCV 4 on your operating system Create CMake scripts to compile your C++ application Understand basic image matrix formats and filters Explore segmentation and feature extraction techniques Remove backgrounds from static scenes to identify moving objects for surveillance Employ various techniques to track objects in a live video Work with new OpenCV functions for text detection and recognition with Tesseract Get acquainted with important deep learning tools for image classification Who this book is for If you are a software developer with a basic understanding of computer vision and image processing and want to develop interesting computer vision applications with OpenCV, Learn OpenCV 4 by Building Projects for you. Prior knowledge of C++ will help you understand the concepts covered in this book.

Die Regeln des Lebens

Author: Richard Templar

Publisher: books4success

ISBN: 3941493302

Category: Self-Help

Page: 250

View: 1388

Erfolgreiches Berufsleben, glückliche Beziehung und Zeit für Interessen und Freizeit. Was wissen die Menschen, die das vereinen? Die Antwort ist einfach: Sie kennen die Regeln. Die Regeln des Lebens. Der Bestseller aus der Feder von Richard Templar listet diese Regeln auf. Sie sind einfach, klar und logisch. Man kann sie im täglichen Leben problemlos umsetzen. Und sie machen einen Schritt für Schritt immer mehr zu dem Menschen, der man schon immer gerne sein wollte. Weltweit wurden von Templars "Rules"-Serie bereits mehr als 2.000.000 Exemplare verkauft. Jetzt erscheint nach "Die Regeln des Reichtums" auch der zweite Band endlich auch auf Deutsch! "Die Regeln des Lebens" entschärfen für Sie das Minenfeld aus Zeitnot, Überarbeitung und Beziehungsfrust. Wenn Sie diese Spielregeln beherrschen, können Sie Ihrem Alltag entspannt ins Auge blicken

Learn Computer Vision Using OpenCV

With Deep Learning CNN and RNN

Author: Sunila Gollapudi

Publisher: Apress

ISBN: 9781484242605

Category: Computers

Page: 145

View: 8015

Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples. The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you’ll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision. After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work. What You Will Learn Understand what computer vision is, and its overall application in intelligent automation systems Discover the deep learning techniques required to build computer vision applications Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis Who This Book Is ForThose who have a basic understanding of machine learning and Python and are looking to learn computer vision and its applications.

OpenCV By Example

Author: Prateek Joshi,David Millan Escriva,Vinicius Godoy

Publisher: Packt Publishing Ltd

ISBN: 1785287079

Category: Computers

Page: 296

View: 2836

Enhance your understanding of Computer Vision and image processing by developing real-world projects in OpenCV 3 About This Book Get to grips with the basics of Computer Vision and image processing This is a step-by-step guide to developing several real-world Computer Vision projects using OpenCV 3 This book takes a special focus on working with Tesseract OCR, a free, open-source library to recognize text in images Who This Book Is For If you are a software developer with a basic understanding of Computer Vision and image processing and want to develop interesting Computer Vision applications with Open CV, this is the book for you. Knowledge of C++ is required. What You Will Learn Install OpenCV 3 on your operating system Create the required CMake scripts to compile the C++ application and manage its dependencies Get to grips with the Computer Vision workflows and understand the basic image matrix format and filters Understand the segmentation and feature extraction techniques Remove backgrounds from a static scene to identify moving objects for video surveillance Track different objects in a live video using various techniques Use the new OpenCV functions for text detection and recognition with Tesseract In Detail Open CV is a cross-platform, free-for-use library that is primarily used for real-time Computer Vision and image processing. It is considered to be one of the best open source libraries that helps developers focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you are completely new to the concept of Computer Vision or have a basic understanding of it, this book will be your guide to understanding the basic OpenCV concepts and algorithms through amazing real-world examples and projects. Starting from the installation of OpenCV on your system and understanding the basics of image processing, we swiftly move on to creating optical flow video analysis or text recognition in complex scenes, and will take you through the commonly used Computer Vision techniques to build your own Open CV projects from scratch. By the end of this book, you will be familiar with the basics of Open CV such as matrix operations, filters, and histograms, as well as more advanced concepts such as segmentation, machine learning, complex video analysis, and text recognition. Style and approach This book is a practical guide with lots of tips, and is closely focused on developing Computer vision applications with OpenCV. Beginning with the fundamentals, the complexity increases with each chapter. Sample applications are developed throughout the book that you can execute and use in your own projects.

Learning OpenCV 3

Computer Vision in C++ with the OpenCV Library

Author: Adrian Kaehler,Gary Bradski

Publisher: "O'Reilly Media, Inc."

ISBN: 1491937963

Category: COMPUTERS

Page: 1024

View: 6079

Get started in the rapidly expanding field of computer vision with this practical guide. Written by Adrian Kaehler and Gary Bradski, creator of the open source OpenCV library, this book provides a thorough introduction for developers, academics, roboticists, and hobbyists. You’ll learn what it takes to build applications that enable computers to "see" and make decisions based on that data. With over 500 functions that span many areas in vision, OpenCV is used for commercial applications such as security, medical imaging, pattern and face recognition, robotics, and factory product inspection. This book gives you a firm grounding in computer vision and OpenCV for building simple or sophisticated vision applications. Hands-on exercises in each chapter help you apply what you’ve learned. This volume covers the entire library, in its modern C++ implementation, including machine learning tools for computer vision. Learn OpenCV data types, array types, and array operations Capture and store still and video images with HighGUI Transform images to stretch, shrink, warp, remap, and repair Explore pattern recognition, including face detection Track objects and motion through the visual field Reconstruct 3D images from stereo vision Discover basic and advanced machine learning techniques in OpenCV

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger

Author: Al Sweigart

Publisher: dpunkt.verlag

ISBN: 3864919932

Category: Computers

Page: 576

View: 1894

Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!

Programmieren lernen mit Python

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3955618072

Category: Computers

Page: 320

View: 7638

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Zur aktualisierten Auflage Diese Auflage behandelt Python 3, geht dabei aber auch auf Unterschiede zu Python 2 ein. Außerdem wurde das Buch um die Themen Unicode, List und Dictionary Comprehensions, den Mengen-Typ Set, die String-Format-Methode und print als Funktion ergänzt. Jenseits reiner Theorie Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält.

Raspberry-Pi-Kochbuch

Lösungen für alle Software- und Hardware-Probleme. Für alle Versionen inklusive Pi 3 & Zero

Author: Simon Monk

Publisher: O'Reilly

ISBN: 396010118X

Category: Business & Economics

Page: 484

View: 3190

Das Raspberry-Pi-Universum wächst täglich. Ständig werden neue Erweiterungs-Boards und Software-Bibliotheken für den Single-Board-Computer entwickelt. Die zweite Ausgabe dieses beliebten Kochbuchs bietet mehr als 240 Hands-on-Rezepte für den Betrieb des kleinen Low-Cost-Computers mit Linux und für die Programmierung des Pi mit Python. Außerdem erläutert es die Anbindung von Sensoren, Motoren und anderer Hardware, einschließlich Arduino und das Internet der Dinge. Power-Maker und Autor Simon Monk vermittelt grundlegendes Know-how, das Ihnen hilft, auch neue Technologien und Entwicklungen zu verstehen und so mit dem Raspberry-Pi-Ökosystem mitzuwachsen. Dieses Kochbuch ist ideal für Programmierer und Bastler, die mit dem Pi bereits erste Erfahrungen gemacht haben. Alle Codebeispiele sind auf der Website zum Buch verfügbar. - Richten Sie Ihren Raspberry Pi ein und verbinden Sie ihn mit dem Netz. - Arbeiten Sie mit seinem Linux-basierten Betriebssystem Raspbian. - Lernen Sie, den Pi mit Python zu programmieren. - Verleihen Sie Ihrem Pi "Augen" für Anwendungen, die maschinelles Sehen erfordern. - Steuern Sie Hardware über den GPIO-Anschluss. - Verwenden Sie den Raspberry Pi, um unterschiedliche Motoren zu betreiben. - Arbeiten Sie mit Schaltern, Tastaturen und anderen digitalen Eingaben. - Verwenden Sie Sensoren zur Messung von Temperatur, Licht und Entfernung. - Realisieren Sie auf verschiedenen Wegen eine Verbindung zu IoT-Geräten. - Entwerfen Sie dynamische Projekte mit Raspberry Pi und dem Arduino.

Practical Computer Vision with SimpleCV

The Simple Way to Make Technology See

Author: Kurt Demaagd,Anthony Oliver,Nathan Oostendorp,Katherine Scott

Publisher: "O'Reilly Media, Inc."

ISBN: 144934383X

Category: Computers

Page: 254

View: 6495

Learn how to build your own computer vision (CV) applications quickly and easily with SimpleCV, an open source framework written in Python. Through examples of real-world applications, this hands-on guide introduces you to basic CV techniques for collecting, processing, and analyzing streaming digital images. You’ll then learn how to apply these methods with SimpleCV, using sample Python code. All you need to get started is a Windows, Mac, or Linux system, and a willingness to put CV to work in a variety of ways. Programming experience is optional. Capture images from several sources, including webcams, smartphones, and Kinect Filter image input so your application processes only necessary information Manipulate images by performing basic arithmetic on pixel values Use feature detection techniques to focus on interesting parts of an image Work with several features in a single image, using the NumPy and SciPy Python libraries Learn about optical flow to identify objects that change between two image frames Use SimpleCV’s command line and code editor to run examples and test techniques

Matlab für Dummies

Author: Jim Sizemore

Publisher: John Wiley & Sons

ISBN: 352780871X

Category: Computers

Page: 416

View: 7705

Ob Naturwissenschaftler, Mathematiker, Ingenieur oder Datenwissenschaftler - mit MATLAB haben Sie ein mächtiges Tool in der Hand, das Ihnen die Arbeit mit Ihren Daten erleichtert. Aber wie das mit manch mächtigen Dingen so ist - es ist auch ganz schön kompliziert. Aber keine Sorge! Jim Sizemore führt Sie in diesem Buch Schritt für Schritt an das Programm heran - von der Installation und den ersten Skripten bis hin zu aufwändigen Berechnungen, der Erstellung von Grafiken und effizienter Fehlerbehebung. Sie werden begeistert sein, was Sie mit MATLAB alles anstellen können.

Machine Learning mit Python

Das Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning

Author: Sebastian Raschka

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958454240

Category: Computers

Page: 424

View: 3551

Versionskontrolle mit Git

Author: Jon Loeliger

Publisher: O'Reilly Germany

ISBN: 389721945X

Category:

Page: 338

View: 7204

Git wurde von keinem Geringeren als Linus Torvalds ins Leben gerufen. Sein Ziel: die Zusammenarbeit der in aller Welt verteilten Entwickler des Linux-Kernels zu optimieren. Mittlerweile hat das enorm schnelle und flexible System eine groe Fangemeinde gewonnen. Viele Entwickler ziehen es zentralisierten Systemen vor, und zahlreiche bekannte Entwicklungsprojekte sind schon auf Git umgestiegen. Verstandliche Einfuhrung: Wer Git einsetzen und dabei grotmoglichen Nutzen aus seinen vielseitigen Funktionen ziehen mochte, findet in diesem Buch einen idealen Begleiter. Versionskontrolle mit Git fuhrt grundlich und gut verstandlich in die leistungsstarke Open Source-Software ein und demonstriert ihre vielfaltigen Einsatzmoglichkeiten. Auf dieser Basis kann der Leser Git schon nach kurzer Zeit produktiv nutzen und optimal auf die Besonderheiten seines Projekts abstimmen. Insider-Tipps aus erster Hand: Jon Loeliger, der selbst zum Git-Entwicklerteam gehort, lasst den Leser tief ins Innere des Systems blicken, so dass er ein umfassendes Verstandnis seiner internen Datenstrukturen und Aktionen erlangt. Neben alltaglicheren Szenarios behandelt Loeliger auch fortgeschrittene Themen wie die Verwendung von Hooks zum Automatisieren von Schritten, das Kombinieren von mehreren Projekten und Repositories zu einem Superprojekt sowie die Arbeit mit Subversion-Repositories in Git-Projekten.